CHARGE-CONSERVATION-DRIVEN CORRELATIONS A MICROSCOPIC APPROACH

Motivations:

- 1. Investigate Evolution of Charge Content (u,d,s) Extract/confirm $\chi_{ab}(\tau)$
- 2. Diffusion Constant for Light Quarks
- 3. Background for CME Signal

SCOTT PRATT — MICHIGAN STATE UNIVERSITY CHRIS PLUMBERG — UNIVERSITY OF MINNESOTA

CORRELATIONS & SUSCEPTIBILITIES

 $C_{ab}(r_{1}, r_{2}) = \langle \delta \rho_{a}(r_{1}) \delta \rho_{b}(r_{2}) \rangle$ $\int dr_{2} \ C_{ab}(r_{1}, r_{2}) = 0, \quad \text{(finite system)}$ $\int dr_{2} \ C_{ab}(r_{1}, r_{2}) = \chi_{ab}(r_{1}) = \frac{1}{\Omega} \langle \delta Q_{a} \delta Q_{b} \rangle, \quad \text{(equilibrium)}$ GASES $\chi_{ab}^{\text{hadron}} = \sum_{b} n_{h} q_{ha} q_{hb}$

$$\chi_{ab}^{\rm QGP} = (n_a + n_{\bar{a}})\delta_{ab}$$

WE MODEL C'

 $C_{ab}(r_1, r_2) \approx \chi_{ab}(r_1)\delta(r_1 - r_2) + C'_{ab}(r_1, r_2)$

FROM C' TO MEASUREMENT

At Hypersurface:

$$\frac{\partial N_h}{\partial q_a} = \chi_{ab}^{-1} q_{h,b} \label{eq:gamma} \mbox{If charge equilibrated amongst hadrons}$$

$$\langle \delta \rho_h(r_1) \delta \rho_{h'}(r_2) \rangle = C'_{ab}(r_1, r_2) \frac{\partial N_h}{\partial q_a} \frac{\partial N_{h'}}{\partial q_b}$$

Defining Charge Balance Function:

$$B_{hh'}(p_2|p_1) \equiv -\frac{\langle [\delta n_h(p_1) - \delta n_{\bar{h}}(p_1)] [\delta n_{h'}(p_2) - \delta n_{\bar{h}'}(p_2)] \rangle}{n_h(p_1) + n_{\bar{h}}(p_2)}$$

$$B_{pK}(p_2|p_1) \equiv -\frac{\langle [\delta n_p(p_1) - \delta n_{\bar{p}}(p_1)] [\delta n_{K^+}(p_2) - \delta n_{K^-}(p_2)] \rangle}{n_p(p_1) + n_{\bar{p}}(p_1)}$$

 p_1 , p_2 refers to rapidity, azimuthal angle Q_{inv} ...

FROM C' TO MEASUREMENT CME "SIGNAL"

 $\gamma_p = \langle \cos(\theta_1 + \theta_2) \rangle_{\text{o.s.}} - \langle \cos(\theta_1 + \theta_2) \rangle_{\text{s.s.}}$

FROM TWO-SURGE BLAST-WAVE MODEL

Adjust Initial-State Chemistry (First Surge) Adjust 2 Widths of C'($\Delta \eta$)

FROM TWO-SURGE BLAST-WAVE MODEL

Adjust Initial-State Chemistry (First Surge) Adjust 2 Widths of C'(Δη)

S.P., W.McCormack and C.Ratti, PRC 2015

MODEL C'

- 1. Base C' on Hydro Evolution, OSU Hydro (boost-invariant)
- 2. Generate MC Pairs of charge a and -b with probability:

$$d^3r \chi_{ab}$$

Initial pairs already separated, gaussian parameter in spatial rapidity:

MODEL C' THROUGH HYDRO

4. Model diffusion of charges, free stream + collisions

$$\Gamma_{\rm coll.} = \frac{1}{6D}$$

D comes from lattice: Aarts et al, [hep-lat]1412.6411v2

CONVERT C' BALANCE FUNCTION

4. For each charge q_a that passes through hyper surface $d^4x \; \partial \cdot (u\chi_{ab})$

Probability of creating hadron of type h is:

$$\delta N_h = \langle N_h \rangle q_{h,a} \chi_{ab} q_b,$$

$$\langle N_h \rangle = \frac{\Omega^{\mu}}{(2\pi)^3} \int \frac{d^3 p}{E_p} p^{\mu} f(\mathbf{p})$$

- 5. Only correlate particles (and their daughters) with those from corresponding pair
- 6. Model denominator of BF with usual Cooper-Frye, add contributions from to numerator
- 7. Convolute with STAR acceptance filter (provided by G.Westfall)

NUMERICAL COST

Little noise, because you track correlated pairs

- One hydro event
- sample ~ 10⁶ charge pairs, ~10⁷ hadron pairs
- ~ 5 minutes on laptop (not counting hydro)
- BUT, much more computing when cascade added

RESULTS (BINNED BY RAPIDITY)

Results depend on σ_0, T_f, D

RESULTS BINNED BY Φ_1 AND $\Delta\Phi$

More flow in-plane \rightarrow narrower BF More particles in-plane $\rightarrow \langle \Delta \phi \rangle \neq 0$ STAR preliminary results qualitatively similar

$$\begin{aligned} \langle \cos(\phi_1 + \phi_2) \rangle_{os} - \langle \cdots \rangle_{ss} \\ = \mathbf{p}_{\mathbf{p}} = \langle \cos \phi_1 \rangle \langle \cos \Delta \phi \rangle_{os} \\ + \langle \cos \phi_1 \ \cos \Delta \phi \rangle_{os} - \langle \cos \phi_1 \rangle \langle \cos \Delta \phi \rangle_{os} \\ - \langle \sin \phi_1 \ \sin \Delta \phi \rangle_{os} - \langle \cdots \rangle_{ss} \end{aligned}$$

COMPARE TO STAR

- **Qualitatively similar**
- **BUT!**

STAR results ~25% narrower for all ϕ_1

COMPARE TO STAR

Calculation:

- only one centrality, so far
- ~ 10% above STAR

S.P., S.Schlichting and S.Gavin PRC 2011

OTHER CALCULATIONS VS. STAR

PION CASCADE:

- initial local charge conservation
- vary spatial anisotropy
- vary cross section
- similar to STAR
- includes momentum conservation (~explains both same/opposite sign

S.Schlichting and S.P. PRC 2011

OTHER CALCULATIONS VS. STAR

BLAST WAVE:

 parameters: widths of B(Δφ) & B(Δy)
Use Retiere/Lisa BW parameters

ADD CASCADE

Can no longer isolate correlated particles -> NOISY

Divide C' into 2 parts:

- 1. Inter-pair correlations (exist at hyper-surface) scatter particles (s-wave scattering), keep track of partners
- 2. Correlations that build in cascade: generate uncorrelated particles, then collide, decay, calculate correlations between all particles

(2) is NOISY!!

ADD CASCADE (PROGRESS REPORT)

GOING FORWARD

- Finish Implementation of Cascade
- Add effects of baryon annihilation
- Evaluate many species and kinematics
- Imaging: $B_{hh'}(\Delta \vec{p}) \rightarrow C_{ab}(\Delta \vec{r})$
- <u>Experiment</u>
 - STAR and ALICE:
 - Calculate BFs for multiple species, bin by $\Delta \phi$, Δy , Q_{inv} and by momentum/direction of first particle — CMS/ALICE:
 - Use wide rapidity acceptance, investigate spread of charges produced early Correlate $\langle \Delta \phi \rangle$ vs $\langle \Delta y \rangle$, determine D!!
 - Small Systems:

Are quarks produced early? or at hadronization?

STAR, AZIMUTHAL BFS

