

Baryon-baryon femtoscopy in pp and p-A collisions with ALICE

BERNHARD HOHLWEGER FOR THE ALICE COLLABORATION

E62 DENSE AND STRANGE HADRONIC MATTER

GROUP PROF. DR. LAURA FABBIETTI

PHYSIK-DEPARTMENT - TECHNISCHE UNIVERSITÄT MÜNCHEN

J. Schaffner-Bielich, NPA 804 (2008), 309-321

- Hyperon production
 becomes energetically
 favorable at finite
 densities
- Hyperon interaction potential predicts
 - Onset of their production
 - Effect on the Equation of State (EoS)
- For the Λ Hyperon χ EFT in NLO predicts repulsion

 Λ potential in symmetric nuclear matter

The Equation of State ALICE

D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva Phys. Rev. Lett. 114, 092301 (2015)

• With the onset of the production of hyperons the EoS softens

The Equation of State

D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva Phys. Rev. Lett. 114, 092301 (2015)

- With the onset of the production of hyperons the EoS softens
- EoS allowing for hyperon production fail to describe heavy neutron stars → Hyperon Puzzle

ALICE

 Data from scattering experiments from 1968 and 1971 in bubble chambers

Global Proton-A Scattering Data

- $K^- + p \rightarrow \Sigma^0 + \pi^0, \Sigma^0 \rightarrow \Lambda + \gamma$
- Production threshold for Λ 's : p $\geq 100 \text{ MeV}$
- One observed double Λ hyper-nucleus (Nagara Event) predicts a shallow $\Lambda - \Lambda$ attraction
- Different type of measurement needed to obtain constraints at low momentum
- Can we use Femtoscopic measurements?

- Proton identification with TPC and TOF ⁶.
- Reconstruction of hyperons
 - $\Lambda \rightarrow p\pi^-$ (BR ~ 64%)
 - $\Xi^- \rightarrow \Lambda \pi^-$ (BR ~ 100%)
 - Datasets:
 - pp 7 TeV: 3.4·10⁸ Events
 - pp 13 TeV: 10·10⁸ Events
 - p-Pb 5.02 TeV:

10.10⁸ Events 6.0.10⁸ Events

- Proton identification with TPC and TOF
- Reconstruction of hyperons
 - $\Lambda \rightarrow p\pi^-$ (BR ~ 64%)
 - $\Xi^- \rightarrow \Lambda \pi^-$ (BR ~ 100%)
- Datasets:
 - pp 7 TeV: 3.4·10⁸ Events
 - pp 13 TeV: 10·10⁸ Events
 - p-Pb 5.02 TeV: 6.0·10⁸ Events

Given by:

The correlation function:

 $k^* = |p_a^* - p_b^*|$ and $p_a^* + p_a^* = 0$

ТШ

The correlation function:

$$C(k^*) = \frac{P(\boldsymbol{p}_a, \boldsymbol{p}_b)}{P(\boldsymbol{p}_a)P(\boldsymbol{p}_b)},$$

Experimentally obtained as:

$$C(k^*) = \mathcal{N} \frac{N_{Same}(k^*)}{N_{Mixed}(k^*)}$$

Given by:

p-p, p- Λ , p- Ξ and $\Lambda-\Lambda$ Correlation Function

ПΠ

The correlation function:

$$C(k^*) = \frac{P(\boldsymbol{p}_a, \boldsymbol{p}_b)}{P(\boldsymbol{p}_a)P(\boldsymbol{p}_b)},$$

Experimentally obtained as:

Modelling the Correlation function

CATS Correlation Analysis Tool Using the Schrödinger Equation		Lednický
Numerical Solver		Analytical Model
Analytical source distribution Distributions from transport models	SOURCE	Gaussian source distribution
 Solution of the two particle Schrödinger Equation ➤ Can incorporate any strong interaction potential, Coulomb interaction and effects of quantum statistics 	WAVE FUNCTION	 Based on the effective Range expansion ➤ The interaction is modeled using the scattering length (f₀) and the effective range (d₀)
p-p, p- Ξ and p- Λ (NLO) Correlation function	Used to fit the	p- Λ (LO) and $\Lambda ext{}\Lambda$ Correlation function
arXiv:1802.08481 (Accepted by EPJC)		 R. Lednicky and V. L. Lyuboshits, Sov. J. Nucl. Phys. 35, 770 (1982), [Yad. Fiz.35,1316(1981)].

Gaussian Source – pp collisions $\sqrt{s} = 13$ TeV

- Gaussian source and Argonne ν_{18} potential describes the p-p correlation function
 - Source size of the p-p (13 TeV) system
 r₀=1.12 fm
 - Source size of the p-Pb (5.02 TeV) system r₀=1.44 fm
 - For interaction studies the

multiplicity integrated correlation

function can be used

- ALI-PREL-144801
- With a Gaussian source the data of both collision systems favor χ EFT LO calculations over NLO calculations

ALI-PREL-144813

- Combination of all available datasets
- Test of the agreement
 between data and the
 prediction by the Lednicky
 model by nσ
- Small source size limits the prediction power of

Lednicky

ТΠ

k* (GeV/c)

Femtoscopy is an excellent tool to study interactions of particle pairs

- Significant sensitivity to the interaction potentials
- For hyperons accesses novel regions not constrained by scattering experiments
- The attractive p-Ξ⁻ interaction was observed for the first time

 $\Lambda p \rightarrow \Lambda p$

- Run2 statistics might allow to study the p- Σ^0 correlation function
 - $\Sigma^0 \to \Lambda + \gamma$ $e^+ + e^-$
- Ongoing analysis of p-K pairs
- <u>Universal and Robust Femto Analysis Tool</u>
 - Fit the correlation function of various systems simultaneously in combination with CATS
- Development of a formalism to study three particle correlations

Thank you for your attention!

18

- p- Λ Correlations: Scaled EPOS source
- Double Gaussian and a Cauchy source ۲ distributions fail to describe the data
- Only the rescaled EPOS source fits the data
 - Favors χ EFT NLO potential
 - EPOS + NLO χ 2/ndf : 1.45 •
 - Gauss + LO χ 2/ndf : 0.49
- Take home message: Improve on understanding the source

ALI-PREL-144881

- Curves represent different points in the Λ - Λ exclusion plot
- For scattering parameters in the region $a_0 > 0$ the correlation function is not sensitive

- Combination of all available datasets
- Test of the agreement
 between data and the
 prediction by the Lednicky
 model by nσ
- Small source size limits the prediction power of

Lednicky

Decomposition of the p-p correlation function

 $\{ pp \} = pp + p_{\Lambda}p + p_{\Lambda} + p_{\Lambda} + p_{\Sigma^{+}}p + p_{\Sigma^{+}}p_{\Sigma^{+}} + p_{\Lambda}p_{\Sigma^{+}} + \tilde{p}p + \tilde{p}p_{\Lambda} + \tilde{p}p_{\Sigma^{+}} + \tilde{p}\tilde{p},$

- Purity from MC (Pythia 8)
- Feed-down fractions from MC template fits to the DCA_{xy} distribution

h-h
λ [%]
75.19
15.06
0.75
6.46
0.14
0.65
1.52
0.15
0.07
0.01

Decomposition of the p- Λ correlation function Π

$$\begin{split} \{p\Lambda\} &= p\Lambda + p\Lambda_{\Xi^-} + p\Lambda_{\Xi^0} + p\Lambda_{\Sigma^0} + p_\Lambda\Lambda + p_\Lambda\Lambda_{\Xi^-} + p_\Lambda\Lambda_{\Xi^0} + p_\Lambda\Lambda_{\Sigma^0} \\ &+ p_{\Sigma^+}\Lambda + p_{\Sigma^+}\Lambda_{\Xi^-} + p_{\Sigma^+}\Lambda_{\Xi^0} + p_{\Sigma^+}\Lambda_{\Sigma^0} + \tilde{p}\Lambda + \tilde{p}\Lambda_{\Xi^-} + \tilde{p}\Lambda_{\Xi^0} + \tilde{p}\Lambda_{\Sigma^0} \\ &+ p\tilde{\Lambda} + p_\Lambda\tilde{\Lambda} + p_{\Sigma^+}\tilde{\Lambda} + \tilde{p}\tilde{\Lambda}. \end{split}$$

- Purity from fits to the invariant mass distribution
- Feed-down fractions from MC template fits to the cosα distribution

I	$D-\Lambda$]	$p-\Lambda$
Pair	λ[%]	Pair	λ [%]
рΛ	52.42	pΛ	0.53
$\mathrm{p}\Lambda_{\Xi^-}$	6.94	${\widetilde p}\Lambda_{\Xi^-}$	0.07
$p\Lambda_{\Xi^0}$	6.94	${\widetilde{p}}\Lambda_{\Xi^0}$	0.07
$\mathrm{p}\Lambda_{\Sigma^0}$	17.47	$ ilde{\mathrm{p}}\Lambda_{\Sigma^0}$	0.18
$p_\Lambda\Lambda$	5.25	$p\tilde{\Lambda}$	2.95
$p_\Lambda\Lambda_{\Xi^-}$	0.69	$p_{\Lambda}\tilde{\Lambda}$	0.30
$p_\Lambda\Lambda_{\Xi^0}$	0.69	$p_{\Sigma^+} ilde\Lambda$	0.13
$p_\Lambda\Lambda_{\Sigma^0}$	1.75	$ ilde{p} ilde{\Lambda}$	0.03
$p_{\Sigma^+}\Lambda$	2.25		
$p_{\Sigma^+}\Lambda_{\Xi^-}$	0.30		
$p_{\Sigma^+}\Lambda_{\Xi^0}$	0.30		
$p_{\Sigma^+}\Lambda_{\Sigma^0}$	0.75		

Decomposition of the Λ - Λ correlation function Π

$$egin{aligned} \{\Lambda\Lambda\} &= \Lambda\Lambda + \Lambda\Lambda_{\Sigma^0} + \Lambda_{\Sigma^0}\Lambda_{\Sigma^0} + \Lambda\Lambda_{\Xi^0} + \Lambda_{\Xi^0}\Lambda_{\Xi^0} + \Lambda\Lambda_{\Xi^-} \ &+ \Lambda_{\Xi^-}\Lambda_{\Xi^-} + \Lambda_{\Sigma^0}\Lambda_{\Xi^0} + \Lambda_{\Sigma^0}\Lambda_{\Xi^-} + \Lambda_{\Xi^0}\Lambda_{\Xi^-} \ &+ ilde{\Lambda}\Lambda + ilde{\Lambda}\Lambda_{\Sigma^0} + ilde{\Lambda}\Lambda_{\Xi^-} + ilde{\Lambda}\Lambda_{\Xi^0} + ilde{\Lambda}\Lambda. \end{aligned}$$

Lambda properties obtained from the Λ purity and the cos α template fits

Λ	$\Lambda - \Lambda$	Γ	$\Lambda - \Lambda$
Pair	λ[%]	Pair	λ [%]
ΛΛ	36.54	$ ilde{\Lambda}\Lambda$	4.11
$\Lambda\Lambda_{\Sigma^0}$	24.36	$ ilde{\Lambda} \Lambda_{\Sigma^0}$	1.37
$\Lambda_{\Sigma^0}\Lambda_{\Sigma^0}$	4.06	$ ilde{\Lambda} \Lambda_{\Xi^0}^{\Sigma}$	0.54
$\Lambda\Lambda_{\Xi^0}$	9.67	$ ilde{\Lambda}\Lambda_{\Xi^-}^-$	0.54
$\Lambda_{\Xi^0}\Lambda_{\Xi^0}$	0.64	$ ilde{\Lambda} ilde{\Lambda}$	0.12
$\Lambda\Lambda_{\Xi^-}$	9.67		
$\Lambda_{\Xi^-}\Lambda_{\Xi^-}$	0.64		
$\Lambda_{\Sigma^0}\Lambda_{\Xi^0}$	3.22		
$\Lambda_{\Sigma^0}\Lambda_{\Xi^-}$	3.22		
$\Lambda_{\Xi^0}\Lambda_{\Xi^-}$	1.28		

Decomposition of the p- Ξ correlation function Π

$$\begin{split} \{p\Xi^{-}\} &= p\Xi^{-} + p\Xi_{\Xi^{-}(1530)}^{-} + p\Xi_{\Xi^{0}(1530)}^{-} + p\Xi_{\Omega}^{-} + p_{\Lambda}\Xi^{-} + p_{\Lambda}\Xi_{\Xi^{-}(1530)}^{-} \\ &+ p_{\Lambda}\Xi_{\Xi^{0}(1530)}^{-} + p_{\Lambda}\Xi_{\Omega}^{-} + p_{\Sigma^{+}}\Xi^{-} + p_{\Sigma^{+}}\Xi_{\Xi^{-}(1530)}^{-} + p_{\Sigma^{+}}\Xi_{\Xi^{0}(1530)}^{-} + p_{\Sigma^{+}}\Xi_{\Omega}^{-} \\ &+ \tilde{p}\Xi^{-} + \tilde{p}\Xi_{\Xi^{-}(1530)}^{-} + \tilde{p}\Xi_{\Xi^{0}(1530)}^{-} + \tilde{p}\Xi_{\Omega}^{-} + p_{\Xi^{-}}^{-} + p_{\Sigma^{+}}\Xi^{-} + \tilde{p}\Xi^{-} \\ &+ \tilde{p}\Xi^{-} + \tilde{p}\Xi_{\Xi^{-}(1530)}^{-} + \tilde{p}\Xi_{\Xi^{0}(1530)}^{-} + \tilde{p}\Xi_{\Omega}^{-} + p_{\Xi^{-}}^{-} + p_{\Sigma^{+}}\Xi^{-} + \tilde{p}\Xi^{-} \\ &+ \tilde{p}\Xi^{-} + \tilde{p}\Xi_{\Xi^{-}(1530)}^{-} + \tilde{p}\Xi_{\Xi^{0}(1530)}^{-} + \tilde{p}\Xi_{\Omega}^{-} + p_{\Xi^{-}}^{-} + p_{\Xi^{-}}^{+$$

Feeding from

- Ω (BR very small)
- $\Xi^{0}(1530)$ and $\Xi^{-}(1530)$
 - Isospin partners: assume to be produced in the same amount
 - ∑(1530)/Ξ⁻ = 0.32
 (https://doi.org/10.1140/epjc/s10052-014-3191-x)
 - BR($\Xi^0(1530) \rightarrow \Xi^-$) = 2/3
 - BR(Ξ -(1530) \rightarrow Ξ -) = 1/3

p–3	Ξ	p-3	Ξ
Pair	λ[%]	Pair	λ[%]
pΞ ⁻	52.40	$ ilde{p}\Xi^-$	0.53
$p\Xi_{\Xi^{-}(1530)}^{-}$	8.32	$\tilde{p}\Xi_{\Xi^{-}(1530)}^{-}$	0.08
$p\Xi_{\Xi^{0}(1530)}^{-}$	16.65	$\tilde{p}\Xi^{-}_{\Xi^{0}(1530)}$	0.17
$p\Xi_{\Omega}^{-}$	0.67	$\tilde{p}\Xi_{\Omega}^{-}$	0.01
$p_{\Lambda}\Xi^{-}$	5.25	$p\Xi^{-}$	8.67
$p_{\Lambda}\Xi^{-}_{\Xi^{-}(1530)}$	0.83	$p_{\Lambda}\tilde{\Xi}$	0.87
$p_{\Lambda} \Xi^{-}_{\Xi^{0}(1530)}$	1.67	$p_{\Sigma^+} \widetilde{\Xi^-}$	2.25
$p_{\Lambda}\Xi_{\Omega}^{-}$	0.07	$ ilde{ extsf{p}}\Xi ilde{ extsf{-}}$	0.09
$\mathrm{p}_{\Sigma^+}\Xi^-$	2.25		
$p_{\Sigma^+} \Xi^{\Xi^-(1530)}$	0.36		
$p_{\Sigma^+} \Xi^{\Xi^0(1530)}$	0.71		
$p_{\Sigma^+}\Xi_{\Omega}^-$	0.03		

pp $\sqrt{s}=13$ TeV		
Particle	# baryons (uncorrected)	
р	113.7 x 10 ⁶	
$\overline{\mathbf{p}}$	97.4 x 10 ⁶	
Λ	22.3 x 10 ⁶	
$\overline{\Lambda}$	21.0 x 10 ⁶	
Ξ^-	0.51 x 10 ⁶	
Ξ^+	0.53 x 10 ⁶	

Pair	# of pairs k* < 200 MeV/c
p – p	190 x 10 ³
$\overline{\mathrm{p}}-\overline{\mathrm{p}}$	140 x 10 ³
$p - \Lambda$	62 x 10 ³
$\overline{p}-\overline{\Lambda}$	49 x 10 ³
$\Lambda - \Lambda$	5659
$\bar{\Lambda}-\bar{\Lambda}$	5243
$p - \Xi^-$	407
$\overline{p}-\Xi^+$	364

Some Numbers: p-Pb - $\sqrt{s_{NN}}$ = 5.02 TeV

p-Pb $\sqrt{s_{NN}}=5.02$ TeV		
Particle	# baryons (uncorrected)	
р	155 x 10 ⁶	
p	133 x 10 ⁶	
Λ	26 x 10 ⁶	
$\overline{\Lambda}$	24 x 10 ⁶	
Ξ^-	0.9 x 10 ⁶	
Ξ^+	0.9 x 10 ⁶	

Pair	# of pairs k* < 200 MeV/c
р — р	517 x 10 ³
$\overline{\mathrm{p}}-\overline{\mathrm{p}}$	370 x 10 ³
$p - \Lambda$	127 x 10 ³
$\overline{\mathrm{p}}-\overline{\Lambda}$	62 x 10 ³
$\Lambda - \Lambda$	13 x 10 ³
$\bar{\Lambda} - \bar{\Lambda}$	12 x 10 ³
$p - \Xi^-$	1.8 x 10 ³
$\overline{p} - \Xi^+$	1.3 x 10 ³

The unique opportunity of small sources

