NA61/SHINE results on Lévy analysis of HBT correlation functions

XIII Workshop on Particle Correlations and Femtoscopy, Kraków, 2018

Barnabás Pórfy for the NA61/SHINE Collaboration

Wigner RCP, Hungary

May 26, 2018

▲冊 ▶ ▲ ∃ ▶ ▲ ∃ ▶ 三 目目 つくべ

B.Porfy for NA61/SHINE WP

WPCF 2018

1/18

Outline

1 Introduction

- NA61/SHINE experiment and search for the CEP
- Lévy type of HBT

2 NA61/SHINE HBT results

- Analysis setup
- Raw results
- Lévy HBT parameters

3 Conclusion

< □ > < □ > < 三 > < 三 > < 三 > < 三 = < ○ < ○

NA61/SHINE experiment and search for the CEP Lévy type of HBT

The NA61/SHINE Detector

- Located at CERN SPS, North Area
- Fixed target experiment
- Large acceptance hadron spectrometer (TPC)
 - Covering the full forward hemisphere
 - Outstanding tracking, down to $p_T = 0 \ GeV/c$
- Various nuclei at multiple energies

 $\ensuremath{\mathsf{NA61}}/\ensuremath{\mathsf{SHINE}}$ experiment and search for the CEP Lévy type of HBT

NA61/SHINE Data

beam momentum [A GeV/c]

- Taken data(green)
- Approved for 2018(red)
- Proposed extension(grey)
- $\bullet \ \ \mathsf{Bigger \ squares} \to \mathsf{better \ statistics} \\ \mathsf{w}/ \ \mathsf{new \ detector} \\ \end{cases}$
- Various collision systems (p+p,p+Pb,Be+Be,Ar+Sc,Xe+La,Pb+Pb)

< 17 ▶

- Wide beam momentum range
- Allows phase diagram investigation

글 눈

- ∢ ⊒ →

.≣ .⊳

NA61/SHINE experiment and search for the CEP Lévy type of HBT

Search for the CEP: Spatial Correlations?

- At the critical point: fluctuations at all scales
- Power-law in spatial correlations
- Critical exponent η
- QCD universality class ↔ 3D Ising: Halasz et al., Phys.Rev.D58 (1998) 096007

Stephanov et al., Phys.Rev.Lett.81 (1998) 4816

- 3D Ising: $\eta = 0.03631$
 - El-Showk et al., J.Stat.Phys.157 (4-5): 869
- Random field 3D Ising $\eta = 0.50 \pm 0.05$ Rieger, Phys.Rev.B52 (1995) 6659
- Particle distributions helps with the behavior of quark matter
- Search for the crit. point with SPS beam momentum/species scan
- Spatial correlation exponent near Critical End Point?

(日) (周) (日) (日) (日) (日) (000

Bose-Einstein Correlations in Heavy-Ion Physics

A way to measure spatial correlations: Bose-Einstein mom. correlations Short recap:

- R. Hanbury Brown, R.Q. Twiss observed Sirius with radiotelescopes R. Hanbury Brown and R. Q. Twiss 1956 Nature 178
 - Intensity correlations as a function of detector distance
 - Measuring size of point-like sources
- Goldhaber et al: applicable in high energy physics:
 - G. Goldhaber et al 1959 Phys.Rev.Lett. 3 181
 - Momentum correlation C(q) is related to the source S(x) $C(q) \cong 1 + |\widetilde{S}(q)|^2$ where $\widetilde{S}(q)$ Fourrier transform of S(q)

- High energy physics: momentum correlation of pions
- We can map the source on a femtometer scale

5 P = 1= √ €

NA61/SHINE experiment and search for the CEP Lévy type of HBT

Lévy Distribution in Heavy-Ion Physics

- Usually the assumed shape of the source is Gaussian
- Expanding medium, increasing mean free path: anomalous diffusion Metzler, Klafter, Physics Reports 339 (2000) 1-77 Csanád, Csörgő, Nagy, Braz.J.Phys. 37 (2007) 1002
- Lévy-stable distribution: $\mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$
 - Generalization of Gaussian
 - $\alpha = 1$ Cauchy, $\alpha = 2$ Gaussian, $\alpha < 2$ Anomalous diffusion
- The shape of the correlation function with Lévy source: $C(q) = 1 + \lambda \cdot e^{-(qR)^{\alpha}}$
 - $\alpha = 2$: Gaussian
 - $\alpha = 1$: Exponential
- Lévy distributions lead to power-law correlation functions
- Lévy-exponent α identical to correlation exponent η Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67, nucl-th/0310042

Analysis setup Raw results Lévy HBT parameters

HBT Measurement setup with NA61/SHINE

- Event mixing method:
 - A(q) Actual event relative momentum distribution
 - Pairs from same event
 - B(q) Background event relative mom. distribution
 - Pairs from mixed event
- Correlation function:
 - C(q) = A(q)/B(q)

(日) (周) (日) (日) (日) (日) (000

Be+Be collision sample from

NA61/SHINE

Analysis setup Raw results Lévy HBT parameters

Details of this HBT Analysis

- Used dataset:
 - Be+Be @ 150 AGeV/*c* with 20 47% cent.
 - Centrality selection based on forward energy measured by PSD, peripheral event selection prone to trigger bias
 - Neg. charged particles \rightarrow not only $\pi^- \rightarrow$ particle contamination
 - Observation: $\pi^-/K^- < 2\% \rightarrow \text{small } K^-$ contamination NA61/SHINE, Eur.Phys.J. C77 (2017) 10, 671 [arXiv:1705.02467]
 - Pos. charged particles would result higher contamination in Be+Be

• Track selection:

- Track quality and vertex cut applied
- Pair selection:
 - $\, \bullet \,$ Random member of pairs with distance $< 0.8 \,$ cm was dropped
- 1D correlation function as function of q_{LCMS} in 4 m_T bins
 - Bins: (0-100, 100-200, 200-400, 400-600) MeV/c
 - $\langle K_T \rangle$: (65, 150, 284, 478) MeV/c
- Systematic uncertainties:
 - Q bin width choice
 - Various values for Q_{min}, Q_{max}
 - Various track cut settings

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > <

Introduction Analysis setup NA61/SHINE HBT results Conclusion Lévy HBT parameters

Example Bose-Einstein Correlation Function

• Example plot, showing B-E effect at very low q values

• Coulomb-hole appearing at small q

3 3

- 4 回 ト - 4 回 ト

Analysis setup Raw results Lévy HBT parameters

Handling the Coulomb Interaction

- Same charge pairs: Coulomb repulsion
 - Standard handling method: Coulomb corr.
 - Calculation: complicated numerical integral

NA61/SHINE HBT results

- Does not depend strongly on $\alpha\text{, see plot}\rightarrow$
- Small effect in Be+Be
- Approximate formula (for $\alpha = 1$) from CMS: Sirunyan et al. (CMS Collab.), arXiv:1712.07198 (PRC 2018)

•
$$\mathcal{K}_{Coulomb}(q) = \text{Gamow}(q) \cdot \left(1 + \frac{\pi \eta q \frac{R}{hc}}{1.26 + q \frac{R}{hc}}\right)$$

where $\text{Gamow}(q) = \frac{2\pi \eta(q)}{e^{2\pi \eta(q)-1}}$ and $\eta(q) = \alpha_{QED} \cdot \frac{\pi}{q}$

• Fit function:
$$C(q) = (1 + \lambda e^{-|qR|^{\alpha}}) \cdot K(q)$$

Analysis setup Raw results Lévy HBT parameters

Example Lévy HBT Fit

- Log-likelihood fit (conventional χ^2)
- Assuming no corr among q points
- Goodness-of-fit analyzed in full range and peak range as well
- Fit parameters:
 - λ Correlation strength related to core/halo ratio
 - R Levy scale parameter similar to a HBT size
 - α Lévy index of stability possibly related to the CEP

A B M A B M

< 17 >

-

Analysis setup Raw results Lévy HBT parameters

Parameters of the Lévy Correlation Function

- The shape of the correlation function with Lévy source: $C(q) = 1 + \lambda \cdot e^{-(qR)^{\alpha}}$
- Lévy scale R:
 - Determines correlation length
 - Got this from simple hydro picture: $R_{HBT} = \frac{R}{\sqrt{1 + \frac{m_T}{T_0} u_T^2}}$

- Decreasing with m_T caused by transverse flow
- Correlation strength λ:
 - Describes core-halo ratio: $\lambda(m_T) = \left(\frac{N_{core}}{N_{core}+N_{halo}}\right)^2$
 - Core: primordial pions; Halo: resonance decay products
- Lévy exponent α:
 - Stability exponent determines source shape
 - $\alpha = 2$: Gaussian, predicted from simple hydro
 - α < 2: Anomalous diffusion, generalized limit theorem
 - $\alpha = 0.5$: Conjectured value at the critical point (CEP)

Analysis setup Raw results Lévy HBT parameters

Correlation Radius R vs m_T

- Spatial scale R: describes homogeneity length
- What to look for: decrease with m_T (radial flow)?
- Compare to: RHIC p+p, LHC p+p and p+Pb results
- Below results are performance plots and not to be interpreted, they were measured in an event class prone to trigger bias

Analysis setup Raw results Lévy HBT parameters

Correlation Strength λ vs m_T

- Correlation strength $\lambda:$ describes core-halo ratio
- What to look for: "hole" at low m_T ?
- Compare to: SPS and RHIC results
- Below results are performance plots and not to be interpreted, they were measured in an event class prone to trigger bias

NA61/SHINE HBT results Conclusion Analysis setup Raw results Lévy HBT parameters

Lévy Stability Index α vs m_T

- Lévy index $\alpha:$ spatial source shape, $\alpha<2$ for anomalous diffusion
- What to look for: distance from Gauss ($\alpha = 2$), Cauchy ($\alpha = 1$) or CEP conjecture ($\alpha = 0.5$)
- Compare to: RHIC Au+Au results at $\sqrt{s_{NN}} = 200 \text{ GeV}$
- Below results are performance plots and not to be interpreted, they were measured in an event class prone to trigger bias

Systematic Uncertainties

Investigated sources of uncertainties

- Track settings
- Pair cuts
- Q bin width choice
- Fit range (Q_{min}, Q_{max}) choice (for each K_T)

Typical effects and results:

- # of points for reconstruction in all TPC
 - Does not depend on m_T
 - For every param. always the largest syst. err.
- Fit limits are strongly dependent on K_T
- Ratio of clusters has low impact
- Q bin width has very low impact
- Track proximity to the main vertex
 - Has slight effect in $m_{T,2}, m_{T,3}$ for lpha and R
 - For λ , any visible effect is in $m_{T,0}$

Summary

- First NA61 HBT analysis, in Be+Be collisions at 150 AGeV/c
- Lévy distribution valid? \rightarrow anomalous diffusion
- Correlation function Lévy parameters
 - *R* weakly decreasing with $m_T \rightarrow$ hydro scaling?
 - λ nearly constant
 - sim. to earlier SPS results
 - different from RHIC results (low- m_T "hole")
 - $\bullet~\alpha$ nearly constant, far from 2, CEP, near 1, similar to RHIC results

Thank you for your attention!

Lévy Exponent ↔ Critical Exponent

- Power-law in spatial correlations: $\sim r^{-(1+lpha)}$
- Spatial corr. at the crit. point: $\sim r^{-(d-2+\eta)}$

 $\alpha\equiv\eta$

Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67, nucl-th/0310042

- QCD universality class \leftrightarrow (random field) 3D lsing: Halasz et al., Phys.Rev.D58 (1998) 096007 Stephanov et al., Phys.Rev.Lett.81 (1998) 4816
 - 3D Ising: $\eta = 0.03631$

El-Showk et al., J.Stat.Phys.157 (4-5): 869

- Random field 3D Ising $\eta = 0.50 \pm 0.05$ Rieger, Phys.Rev.B52 (1995) 6659
- Lévy exponent α change near Critical End Point?

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ●□= ◇Q⊘

χ^2 ,NDF,Conf.lvl values

Core-Halo Model

- Hydrodinamically expanding core, emits pions at the freeze-out
- This results in a two component source: $S(x) = S_c(x) + S_h(x)$
- Core \cong 10 fm size, halo $(\omega, \eta ...) >$ 50 fm size
- Halo unresolvable experimentally
- True q \rightarrow 0, limit C(q = 0) = 2
- Results show $C(q \rightarrow 0) = 1 + \lambda$, where $\lambda = \left(\frac{N_{core}}{N_{bale} + N_{core}}\right)^2$

Bolz et al, Phys.Rev. D47 (1993) 3860-3870 Csörgő, Lörstad, Zimányi, Z.Phys. C71 (1996) 491-497

