

PHENIX measurements of low momentum direct photon radiation from large and small systems: Direct photon scaling

Vladimir Khachatryan

For the PHENIX Collaboration

Department of Physics and Astronomy, Stony Brook University

WPCF 2018

XIII Workshop on Particle Correlations and Femtoscopy

Kraków, Poland, 22-26 May 2018

Content

 \succ Introduction: thermal photon puzzle, PHENIX γ measurements

 \succ Large systems: direct photon p_T spectra and scaling

> Small systems: direct photon R_{γ} , p_T spectra, R_{pA}

 $\succ \gamma$ connection between large and small systems

> Summary

Introduction: Thermal Photon Puzzle

- Large yield and large anisotropy have been observed in Au+Au at 200 GeV by PHENIX
- It is challenging to describe the large yield and anisotropy simultaneously
- > In order to help resolving this puzzle, PHENIX has measured low momentum γ in

large systems:

- Au+Au at 200, 62.4, 39 GeV, Cu+Cu at 200 GeV
- direct photon scaling independent of centerof-mass energy, centrality, system

small systems

- p+p, d+Au, p+Au at 200 GeV
- direct photon excess in central p+Au is consistent with QGP droplets' formation
- Vladimir Khachatryan, WPCF 2018, Kraków

Introduction: Direct Photon Measurements in PHENIX

Photon measurement techniques include

- photons that directly deposit energy into electromagnetic calorimeters:
- virtual photons that internally convert into e⁺e⁻ pairs:
- real photons that externally convert into e⁺e⁻ pairs in a selected detector material:
- The new results on low momentum direct photons with conversion methods based on photon conversions in
 - Readout plane of Hadron Blind Detector (HBD)
 - Layers of Silicon Vertex Tracker (VTX)
 - Vladimir Khachatryan, WPCF 2018, Kraków

Conversions with the HBD backplane

Introduction: Direct Photon Measurements in PHENIX

Identify and reconstruct photons via external conversions to e⁺e⁻ pairs

- HBD backplane (Run 2010)
 - Conversions at fixed radius:60 cm from the event vertex
 - Single e⁺/e⁻ tracks used
 - Radiation thickness ~ 3%
- ➢ VTX layers (≥ Run 2011)
 - Conversions at any material (VTX 3rd 4th layers)
 - e⁺e⁻ pairs used

- Radiation thickness ~ 10%
- Vladimir Khachatryan, WPCF 2018, Kraków

Large Systems: Direct Photon v_n

Large Systems: Direct Photon Preliminary v₂

 v_2 in Au+ Au 0-20% centrality bin at 200 GeV v_2 in Au

v₂ in Au+ Au 20-40% centrality bin at 200 GeV

Higher p_T reach is accessible as compared to the previous v_2 results
Vladimir Khachatryan, WPCF 2018, Kraków

Large Systems: Direct Photon p_T Spectra

Large Systems: Direct Photon p_T Spectra

→ N_{coll} scales like $(dN_{ch}/d\eta)^{1.25}$ for all centerof-mass energies with a logarithmic increasing constant (specific yield)

$$N_{coll}$$
 scales with $dN_{ch}/d\eta$ as

$$N_{coll} = \frac{1}{SY(\sqrt{s_{NN}})} \left(\frac{dN_{ch}}{d\eta}\right)^{\alpha}$$

The specific yield, SY, is a function of $\sqrt{s_{NN}}$

$$SY\left(\sqrt{s_{NN}}\right) = c_1 \log\left(\sqrt{s_{NN}}\right) - c_2$$

- > PHENIX low energy 62.4/39 GeV data are above $p_T = 0.4 \text{ GeV/c}$
- > The data at 62.4/39 GeV falls on top of each other
- \blacktriangleright At high-p_T the 62.4 GeV pQCD is consistent with ISR data

Vladimir Khachatryan, WPCF 2018, Kraków

- Now we compare different energies from 39 GeV to 2760 GeV
- \blacktriangleright Again all data coincides at low- p_T
- We see the expected difference with the energy and N_{coll} scaling at high-p_T

> Direct photon p_T spectra -- quantified by integrating the invariant yield from some p_T value

Vladimir Khachatryan, WPCF 2018, Kraków

- Another representation of the direct photon scaling
- The integrated yield grows faster than the multiplicity
- The prompt photons described by the purple band and integrated pQCD curves have nearly the same slopes

Vladimir Khachatryan, WPCF 2018, Kraków

- At a given center-of-mass energy the direct photon invariant yield in A+A collisions scales with N_{coll} down to below 1 GeV/c in p_T
- → The scaling at low-p_T can be generalized to different center-of-mass energies and centrality/collisions systems if the yield is scaled by $(dN_{ch}/d\eta)^{1.25}$ instead of N_{coll} .
- The low-p_T scaling suggests the main photon sources contributing to it, could be similar across beam energies

Small Systems: Direct Photon Preliminary R_y

 \triangleright R_v from p+p collisions: The new data are in red, the published data are in black

Small Systems: Direct Photon Preliminary R_y

R_γ from p+p collisions: The new data are in red, the published data are in black
R_γ from p+ Au collisions in minbias

Small Systems: Direct Photon Preliminary R_y

- $ightarrow R_{\gamma}$ from p+p collisions: The new data are in red, the published data are in black
- \triangleright R_{γ} from p+ Au collisions in minbias
- \triangleright R_y from p+ Au collisions in 0-5% centrality bin

Small Systems: Direct Photon p_T Spectra

After R_{γ} is constructed, we can get the invariant cross section

Inv. Yield = $(R_{\gamma} - 1) \times \gamma^{had}$

Vladimir Khachatryan, WPCF 2018, Kraków

Q3

After R_{γ} is constructed, we can get the invariant cross section

Inv. Yield = $(R_{\gamma} - 1) \times \gamma^{had}$

Above $p_T = 5.0 \text{ GeV/c}$ the published p+p data are from calorimeter measurements: PRL 109, 152302

After R_{γ} is constructed, we can get the invariant cross section

Inv. Yield = $(R_{\gamma} - 1) \times \gamma^{had}$

The PHENX new p+p fit made by using three p+p data sets

Vladimir Khachatryan, WPCF 2018, Kraków

After R_{γ} is constructed, we can get the invariant cross section

Inv. Yield = $(R_{\gamma} - 1) \times \gamma^{had}$

Vladimir Khachatryan, WPCF 2018, Kraków

After R_{γ} is constructed, we can get the invariant cross section

Inv. Yield = $(R_{\gamma} - 1) \times \gamma^{had}$

One can see a clear enhancement of the direct photon yield above the N_{coll} scaled p+p

Direct Photon Connection Between Large and Small Systems

 \blacktriangleright Let's now go back to the plot of the integrated direct photon yield above $p_T = 1.0 \text{ GeV/c}$

Direct Photon Connection Between Large and Small Systems

- > There seems to be another trend from small systems, different from that of large systems
- Both trends suggest an "intersection region" or "intersection point"
- > p+Au 0-5% data point shows a sign of existence of QGP small droplet

Summary

- New PHENIX direct photon data from Au+ Au 39, 62.4 GeV; Cu+Cu 200 GeV, p+p, p+Au at 200 GeV
- Discovered a new scaling behavior in large systems
 - at a given center-of-mass energy, the low and high- p_T yields scale with N_{coll}
 - across energies, N_{coll} is proportional to $(dN_{ch}/d\eta)^{1.25}$
 - for all energies, the low- p_T yield scales like $(dN_{ch}/d\eta)^{1.25}$
- Discovered excess of direct photons in central p+Au
 - above N_{coll} scaled p+p
 - consistent with the formation of QGP droplets
 - data suggests transition from p+p to A+A like scaling
 - Vladimir Khachatryan, WPCF 2018, Kraków

Back-Ups

Vladimir Khachatryan, WPCF 2018, Kraków

Measuring Direct Photon R_{ν} with the Double Ratio

