Recent lattice Results on the QCD phase diagram

Jana N. Guenther

May 26th 2018

The (T, μ_B) -phase diagram of QCD

Our observables: T_c , Equation of state, Fluctuations

Not covered in this talk

Curvature function:

$$\frac{T_c(\mu_B)}{T_c(0)} = 1 - \kappa \left(\frac{\mu_B}{T_c}\right)^2 + \mathcal{O}(\mu_B^4)$$

Also not in this talk

...nor anything about the Equation of States

Lattice QCD and the sign problem

3 Connecting to experiment

4 Looking for the critical point

$$\mathcal{L}_{QCD} = -rac{1}{4} F^{a}_{\mu
u} F^{a,\mu
u} + \overline{\psi} \left(\mathrm{i} \gamma_{\mu} D^{\mu} - m
ight) \psi$$

- Because of the strong coupling and the self interaction of gluons perturbation theory is not feasible
- Path integral quantization:

$$\langle 0|T\hat{\phi}_1\dots\hat{\phi}_n|0\rangle = \frac{\int D\phi\,\hat{\phi}_1\dots\hat{\phi}_n e^{i\int dx\,\mathcal{L}}}{\int D\phi\,e^{i\int dx\,\mathcal{L}}}$$

First problem: There are many points in space-time $D\phi = \prod_i d\phi(x_i)$ Solution: Replace continuous space by a discrete 4d lattice

Why aren't we finished yet?

- Simulations take a lot of computer time
- Not everything can be calculated directly. For example:
 - Only observables that can be calculated in Euclidean space
 - Only thermal equilibrium
 - Only simulations at

$$\mu_B = 0 \Rightarrow \langle n_B \rangle = 0 \checkmark$$

heavy ion collision experiments

The sign problem

The QCD partition function:

$$egin{aligned} Z(V, T, \mu) &= \int \mathcal{D} U \mathcal{D} \psi \mathcal{D} ar{\psi} e^{-S_F(U, \psi, ar{\psi}) - eta S_G(U)} \ &= \int \mathcal{D} U \det M(U) e^{-eta S_G(U)} \end{aligned}$$

- For Monte Carlo simulations det $M(U)e^{-\beta S_G(U)}$ is interpreted as Boltzmann weight
- If there is particle-antiparticle-symmetry det M(U) is real
- If $\mu^2 > 0 \det M(U)$ is complex

The sign problem

$$\int_{-\infty}^{\infty} (100 - x^2) \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}} \approx \int_{-100}^{100} (100 - x^2) \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}} = \sum_{i=1}^{N} (100 - x_i^2) \frac{e^{-\frac{1}{2}x_i^2}}{\sqrt{2\pi}} \cdot \frac{200}{N}$$

The x_i are drawn from a uniform distribution in the interval [-100, 100]

Importance sampling

$$\int_{-\infty}^{\infty} (100 - x^2) \frac{e^{-\frac{1}{2}x^2}}{\sqrt{2\pi}} = \sum_{i=1}^{N} (100 - x_i^2) \cdot \frac{1}{N}$$

The x_i are drawn from a normal distribution

The sign problem

$$\int_{-\infty}^{\infty} (100-x^2) \frac{e^{-\frac{\mathrm{i}}{2}x^2}}{\sqrt{2\pi}}$$

Dealing with the sign problem

- Reweighting techniques
- Canonical ensemble
- Complex Langevin
- Lefshetz Thimble
- Density of state methods
- Dual variables
- Taylor expansion → [Bazavov et al., Bazavov:2017dus], [Bonati et al., Bonati:2018nut]
- Imaginary μ
- . . .

Looking for the critical point

Analytic continuation

Fluctuations

Connecting to experiment

Looking for the critical point

Different functions

14 / 31

Different functions

Condition:
$$\chi_8 \lesssim \chi_4 \longrightarrow f(\hat{\mu}_B) = a + b\hat{\mu}_B^2 + c\hat{\mu}_B^4 + \frac{b\epsilon}{840}\hat{\mu}_B^6$$

Fluctuations

Looking for the critical point

Simulation details

- Borsanyi et al., Borsanyi:2018grb, arXiv:1805.04445
- Action: tree-level Symanzik improved gauge action, with four times stout smeared staggered fermions
- 2+1+1 flavor, on LCP with pion and kaon mass
- Simulation at $\mu_S = \mu_Q = 0$
- Lattice size: $48^3 \times 12$

•
$$\frac{\mu_B}{T} = i \frac{j\pi}{8}$$
 with $j = 0, 1, 2, 3, 4, 5, 6$ and 7

The fit function

$$\chi_0^B(\hat{\mu}_B) = \frac{p}{T^4} = c_0 + c_2\hat{\mu}_B^2 + c_4\hat{\mu}_B^4 + c_6\hat{\mu}_B^6 + \frac{4!}{8!}c_4\epsilon_1\hat{\mu}_B^8 + \frac{4!}{10!}c_4\epsilon_2\hat{\mu}_B^{10}.$$

where ϵ_1 and ϵ_2 are drawn randomly from a normal with $\mu = -1.25$ and $\sigma = 2.75$ distribution.

From this we can calculate the derivatives that we can measure on the lattice:

$$\begin{split} \chi_1^B(\hat{\mu}_B) &= 2c_2\hat{\mu}_B + 4c_4\hat{\mu}_B^3 + 6c_6\hat{\mu}_B^5 + \frac{4!}{7!}c_4\epsilon_1\hat{\mu}_B^7 + \frac{4!}{9!}c_4\epsilon_2\hat{\mu}_B^9\\ \chi_2^B(\hat{\mu}_B) &= 2c_2 + 12c_4\hat{\mu}_B^2 + 30c_6\hat{\mu}_B^4 + \frac{4!}{6!}c_4\epsilon_1\hat{\mu}_B^6 + \frac{4!}{8!}c_4\epsilon_2\hat{\mu}_B^8\\ \chi_3^B(\hat{\mu}_B) &= 24c_4\hat{\mu}_B + 120c_6\hat{\mu}_B^3 + \frac{4!}{5!}c_4\epsilon_1\hat{\mu}_B^5 + \frac{4!}{7!}c_4\epsilon_2\hat{\mu}_B^7\\ \chi_4^B(\hat{\mu}_B) &= 24c_4 + 360c_6\hat{\mu}_B^2 + c_4\epsilon_1\hat{\mu}_B^4 + \frac{4!}{6!}c_4\epsilon_2\hat{\mu}_B^6. \end{split}$$

Looking for the critical point

$\chi^{\mathcal{B}}_2$, $\chi^{\mathcal{B}}_4$, $\chi^{\mathcal{B}}_6$ and $\chi^{\mathcal{B}}_8$

[D'Elia et al., DElia:2016jqh], see also [Bazavov et al., Bazavov:2017dus]

3 Connecting to experiment

Observables	
Cumulants of the net baryon number distributions: • mean <i>M_B</i>	
• variance σ_B^2	
• skewness S_B : asymmetry of the distribution	

Connecting to experiment

• kurtosis κ_B : "tailedness" of the distribution

Vumber of Events

(f) 62.4 GeV

(g) 200 GeV

Au+Au Collision Net-proton 0.4<p <0.8 (GeV/c)

Calculating observables

We have derivatives with respect to $\hat{\mu}_B$, $\hat{\mu}_Q$ and $\hat{\mu}_S$ of the pressure at $\mu_S = \mu_Q = 0$. Notation:

$$\chi_{i,j,k}^{B,Q,S} = \frac{\partial^{i+j+k} (p/T^4)}{(\partial \hat{\mu}_B)^i (\partial \hat{\mu}_Q)^j (\partial \hat{\mu}_S)^k},$$

with $\hat{\mu}_i = \mu/T$.

We want ratios of the cumulants that are approximately independent of the volume at $\mu_B > 0$, $\langle n_S \rangle = 0$ and $\langle n_Q \rangle = 0.4 \langle n_B \rangle$:

$$\begin{aligned} \frac{M_B}{\sigma_B^2} &= \frac{\chi_1^B(T,\hat{\mu}_B)}{\chi_2^B(T,\hat{\mu}_B)} = \hat{\mu}_B r_{12}^{B,1} + \hat{\mu}_B^3 r_{12}^{B,3} + \dots \\ \frac{S_B \sigma_B^3}{M_B} &= \frac{\chi_3^B(T,\hat{\mu}_B)}{\chi_1^B(T,\hat{\mu}_B)} = r_{31}^{B,0} + \hat{\mu}_B^2 r_{31}^{B,2} + \dots \\ \kappa_B \sigma_B^2 &= \frac{\chi_4^B(T,\hat{\mu}_B)}{\chi_2^B(T,\hat{\mu}_B)} = r_{42}^{B,0} + \hat{\mu}_B^2 r_{42}^{B,2} + \dots \end{aligned}$$

[Bazavov et al., Bazavov:2017dus], [Karsch, Karsch:2017zzw] plot: [STAR, Adamczyk:2013dal]

• $\chi_{1.3}^{BS}$

Measured observables

On each ensemble we measure the $\chi^{BQS}_{i,j,k}$ up to the fourth derivative:

• $\chi_1^{\scriptscriptstyle B}$			
• χ^B_2	Q √Q	0	
• χ^B_3	• χ_2 • χ^{BQ}	• χ_3^{\diamond}	
• χ_4^B	• $\chi^{2,1}_{2,2}$	• $\chi_{3,1}^{BQ}$	• χ^Q_4
• χ^{Q}_{1}	~2,2 • • • 5	• χ_3^S	• χ_4^{S}
• $\chi^{BQ}_{1,1}$	χ_2	• $\chi^{BS}_{3,1}$	QS
• $\chi^{BQ}_{1,2}$	$\chi_{2,1}$	• χ_{21}^{QS}	• X3,1
• $\chi^{BQ}_{1,3}$	• X _{2,2}	• $\chi^{BQS}_{1,2,1}$	
• χ_1^{S}	• $\chi_{1,1}^{QS}$	VQS	• $\chi^{QS}_{1,3}$
• $\chi_{1,1}^{BS}$	• $\chi_{1,1,1}^{\text{DQS}}$	$\chi^{I,2}$	
• $\chi^{BS}_{1,2}$	• $\chi^{BQ3}_{2,1,1}$	• $\lambda 1, 1, 2$	

4 Looking for the critical point

Convergence radius estimators

Ratio test for the pressure:

$$p(\mu) = p_0 + p_2 \hat{\mu}^2 + p_4 \hat{\mu}^4 + p_6 \hat{\mu}^6 + \dots$$

Ratio test $\rightarrow r_{2n}^p = \sqrt{\frac{p_{2n}}{p_{2n+2}}}$

Ratio test for the susceptibility:

$$\chi_2(\mu) = 2p_2 + 12p_4\hat{\mu}^2 + 30p_6\hat{\mu}^4 + \dots$$

Ratio test
$$ightarrow r_{2n}^{\chi} = \sqrt{rac{2n(2n-1)}{(2n+1)(2n+2)}} r_{2n}^{p}$$

Ratios for the radius of convergence

$N_t = 4$ Toy model with critical endpoint

Toy model without critical endpoint

- Start with some parametrization of the curve χ^B_1/μ_B at $\mu=0$
- \bullet Assume that the only difference in the physics at finite μ is a shift in this curve
- The inflection point of this curve is one possible definition of T_c , so shift the curve by using the κ values found in the literature
- You now have a model prediction of χ_1^B for any finite μ , differentiate it a few times at $\mu = 0$ to get estimates of χ_4^B , χ_6^B and χ_8^B NOTE: The model assumes no criticality

Fluctuations in the toy model

RED CURVE: The simple model described in the previous slide without criticality $% \left({{{\rm{CURVE}}} \right)^{2}} \right)$

Fluctuations

Connecting to experiment

Looking for the critical point

Summary

