QCD phase-diagram and multiparticle proton correlations

Adam Bzdak

AGH University of Science and Technology, Kraków

correlation, interaction cumulants and STAR data clusters
two event classes
AB, V.Koch, N.Strodthoff, PRC 95 (2017) 054906
AB, V.Koch, V.Skokov, EPJC 77 (2017) 288
AB, V.Koch, D.Oliinychenko, J.Steinheimer, 1804.04463

Poisson distribution

$$
\begin{aligned}
N & =10^{10} \\
p & =10^{-9} \\
\langle n\rangle & =N p=10
\end{aligned}
$$

event \# 1
event\#2 • • • • • • • •
$P(n)=$ Poisson if $N \rightarrow \infty, p \rightarrow 0, \quad N p=\langle n\rangle$

Such source (multiplicity distribution) is characterized by no correlations, $\boldsymbol{C}_{\boldsymbol{n}}=\mathbf{0}, n=2,3, \ldots$

In what sense "no correlations"

$P\left(n_{1}, n_{2}\right) \stackrel{?}{=} P\left(n_{1}\right) P\left(n_{2}\right)$
It is true for $P(n)=$ Poisson only fixed N
finite N
resonances
volume fluctuation

$$
\begin{aligned}
P\left(n_{1}, n_{2}\right) & =P(n) \frac{n!}{n_{1}!n_{2}!}\left(\frac{1}{2}\right)^{n_{1}}\left(\frac{1}{2}\right)^{n_{2}} \\
n & =n_{1}+n_{2}
\end{aligned}
$$

Multi-particle correlations

m particle cluster
Poisson
$\boldsymbol{C}_{2} \neq 0$
$\boldsymbol{C}_{\boldsymbol{k}}=0, k>2$
factorial
cumulants

$$
\boldsymbol{C}_{\boldsymbol{k}}=\left.\frac{d^{k}}{d z^{k}} \ln \left(\sum_{n} P(n) z^{n}\right)\right|_{z=1}
$$

Interaction can change correlations

$$
\begin{aligned}
& \rho_{2}\left(y_{1}, y_{2}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right)+\boldsymbol{C}_{2}\left(y_{1}, y_{2}\right) \\
& \boldsymbol{C}_{\mathbf{2}}=\int \boldsymbol{C}_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}
\end{aligned}
$$

factorial cumulant
(integrated correlation function)

For Poisson $\boldsymbol{C}_{\mathbf{2}}=0$ but $\boldsymbol{C}_{\mathbf{2}}\left(y_{1}, y_{2}\right)$ can have a non-trivial shape due to, e.g., interactions

For example:

$$
C_{2}\left(\phi_{1}, \phi_{2}\right) \sim \cos (2 \Delta \phi), \quad \Delta \phi=\phi_{1}-\phi_{2}
$$

- hydrodynamics
- initial stage (e.g., CGC)

Multi-particle correlations measure deviations from Poisson

Consider a source giving always one particle

$$
\begin{aligned}
& P(n) \quad \begin{array}{r}
P(n)=1 \text { for } n=1 \\
=0 \text { for } n>1
\end{array} \\
& \boldsymbol{C}_{\boldsymbol{k}}=\left.\frac{d^{k}}{d z^{k}} \ln (z)\right|_{z=1} \\
& \boldsymbol{C}_{\mathbf{2}}=-1, \boldsymbol{C}_{3}=2, \boldsymbol{C}_{4}=-6, \ldots, \boldsymbol{C}_{9}=40320 \\
& \boldsymbol{C}_{\boldsymbol{k}}=(-1)^{k-1}(k-1)!
\end{aligned}
$$

What we know about the QCD phase diagram

The rest is everybody's guess.

Usual expectation based on various effective models

On the experimental side all we can do is to measure various fluctuation observables and hope to see some nontrivial energy or/and system-size dependence

```
see, e.g.,
Stephanov, Rajagopal, Shuryak, PRL (1998)
Stephanov, PRL (2009)
Skokov, Friman, Redlich, PRC (2011)
```

There are some intriguing results:

STAR, HADES

Higher order cumulants

Proton v_{1} (STAR)

HBT radii (STAR)

NA 49
Intermittency in the transverse momentum phase space

Strongly intensive variables

Preliminary STAR data

my notation

K_{4} / K_{2}
cumulants naturally appear in statistical physics
cumulants $\quad K_{i}=\left.\frac{d^{i}}{d t^{i}} \ln \left(\sum_{n} P(n) e^{t n}\right)\right|_{t=0}$

Cumulants are not optimal

$$
\begin{aligned}
& K_{2}=\left\langle(\delta N)^{2}\right\rangle \quad \delta N=N-\langle N\rangle \quad N \text { - number of protons } \\
& \text { we neglect anti-protons, } \\
& \text { good at low energies } \\
& K_{4}=\left\langle(\delta N)^{4}\right\rangle-3\left\langle(\delta N)^{2}\right\rangle^{2} \\
& K_{n}=\langle N\rangle+\text { physics }[2, \ldots, n] \\
& \text { physics = two-, three-, n-particle } \\
& \text { factorial cumulants }
\end{aligned}
$$

for Poisson distribution $K_{n}=\langle N\rangle,($ physics $=0)$

We have

$$
\begin{array}{ll}
K_{2}=\langle N\rangle+C_{2} & \begin{array}{l}
\text { cumulants mix integ. } \\
\text { correlation functions } \\
\text { of different orders }
\end{array} \\
K_{3}=\langle N\rangle+3 C_{2}+C_{3} & \\
K_{4}=\langle N\rangle+7 C_{2}+6 C_{3}+C_{4}
\end{array}
$$

$$
\rho_{2}\left(y_{1}, y_{2}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right)+\boldsymbol{C}_{2}\left(y_{1}, y_{2}\right)
$$

$$
C_{2}=\int C_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}
$$

$\rho_{2}\left(y_{1}, y_{2}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right)+\boldsymbol{C}_{2}\left(y_{1}, y_{2}\right)$

See, e.g.,
B. Ling, M. Stephanov, PRC 93 (2016) 034915 AB, V. Koch, N. Strodthoff , PRC 95 (2017) 054906

Using preliminary STAR data we obtain \boldsymbol{C}_{n}

central signal at 7.7 GeV is driven by large 4-particle correlations

$C_{4}(7.7) \sim 170$
central signal at 19.6 GeV is driven by 2-particle correlations
\boldsymbol{C}_{4} and $\mathbf{6} \boldsymbol{C}_{3}$ cancelation in most central coll.

Suppose that we have clusters (distributed according to Poisson) decaying always to 4 protons

$$
\boldsymbol{C}_{\boldsymbol{k}}=\left\langle N_{\mathrm{cl}}\right\rangle \cdot 4!/(4-k)!
$$

mean number
of clusters
for 5-proton clusters:

$$
\begin{aligned}
& \boldsymbol{C}_{\boldsymbol{k}}=\left\langle N_{\mathrm{cl}}\right\rangle \cdot 5!/(5-k)! \\
& \boldsymbol{C}_{4}=\left\langle N_{\mathrm{cl}}\right\rangle \cdot 120 \\
& \text { and }\left\langle N_{\mathrm{cl}}\right\rangle \sim 1
\end{aligned}
$$

To obtain $\boldsymbol{C}_{\mathbf{4}} \approx 170$ we need $\left\langle N_{\mathrm{cl}}\right\rangle \sim 7$, it means 28 protons. STAR sees on average 40 protons in central collisions.

In this model $C_{2}>0$ and $C_{3}>0$ contrary to the STAR data

Baryon conservation + volume fluctuation (minimal model)

- independent baryon stopping (baryon conservation by construction)
- $N_{\text {part }}$ fluctuations (volume fluctuation - VF)

$$
\begin{aligned}
& \text { STAR } \\
& C_{4} \sim 170 \\
& 6 C_{3} \sim-60 \\
& 7 C_{2} \sim-15
\end{aligned}
$$

we follow the STAR way (centrality etc.) as closely as possible

AB, V. Koch, V. Skokov, EPJC 77 (2017) 288
See also, P. Braun-Munzinger, A. Rustamov, J. Stachel, NPA 960 (2017) 114

Can we describe the STAR data at 7.7 GeV with ordinary multiplicity distributions?

Model with two event classes

$$
P(N)=(1-\alpha) P_{(a)}(N)+\alpha P_{(b)}(N)
$$

That is, with probability $1-\alpha$ we have $P_{(a)}(N)$ and with probability α we have $P_{(b)}(N)$

AB, V. Koch, D. Oliinychenko, J. Steinheimer, 1804.04463

$$
C_{2}=\alpha(1-\alpha) \bar{N}^{2} \approx \alpha \bar{N}^{2}
$$

$$
C_{3}=-\alpha(1-\alpha)(1-2 \alpha) \bar{N}^{3} \approx-\alpha \bar{N}^{3}
$$

$$
C_{4}=\alpha(1-\alpha)\left(1-6 \alpha+6 \alpha^{2}\right) \bar{N}^{4} \approx \alpha \bar{N}^{4}
$$

$$
\bar{N}=\left\langle N_{(a)}\right\rangle-\left\langle N_{(b)}\right\rangle
$$

$$
\begin{aligned}
& \frac{C_{n+1}}{C_{n}} \approx-\bar{N} \\
& \frac{C_{6}}{C_{5}} \approx \frac{C_{5}}{C_{4}} \approx \frac{C_{4}}{C_{3}}=-17 \pm 6
\end{aligned}
$$

We can describe the data with $\alpha \approx 0.0033$

$$
\left\langle N_{(a)}\right\rangle \approx 40,\left\langle N_{(b)}\right\rangle \approx 25
$$

Now we can plot $P(N)$

A finite volume van der Walls model

Conclusions

Four-proton factorial cumulant (int. correlation function) at 7.7 GeV is surprisingly large.

Proton clusters?

Two event classes? Parameter-free predictions.

Volume fluctuation and baryon conservation seem to be irrelevant for C_{3} and $C_{4} . C_{2}$ is likely dominated by background.

Backup

$$
\rho_{2}\left(y_{1}, y_{2}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right)+C_{2}\left(y_{1}, y_{2}\right) \quad \begin{aligned}
& \text { correlation } \\
& \text { function }
\end{aligned}
$$

$$
\rho_{2}\left(y_{1}, y_{2}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right)\left[1+c_{2}\left(y_{1}, y_{2}\right)\right]
$$

reduced correlation function
e.g., does not depend
on binomial efficiency
integrated reduced correlation function "coupling"

$$
c_{2}=\frac{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) c_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}}{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) d y_{1} d y_{2}}=\frac{c_{2}}{\langle N\rangle^{2}}
$$

and the second order cumulant

$$
K_{2}=\langle N\rangle+\underbrace{\langle N\rangle^{2} \boldsymbol{c}_{2}}_{\boldsymbol{C}_{2}}
$$

Constant correlation

$$
c_{2}=\frac{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) c_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}}{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) d y_{1} d y_{2}}
$$

$$
\boldsymbol{c}_{n}\left(y_{1}, p_{t 1}, \ldots, y_{n}, p_{t n}\right)=c_{n}^{0}=\mathrm{const} \quad \rightarrow \quad \boldsymbol{c}_{n}=c_{n}^{0}
$$

Comparison of 7.7, 11.5 and 19.6 GeV

Couplings' point of view and global baryon conservation

Critical point: everybody's guess

Figure 4: Comparison of predictions for the location of the QCD critical point on the phase diagram. Black points are model predictions: NJLa89, NJLb89 - [12], CO94 - [13, 14], INJL98 - [15], RM98 - [16], LSM01, NJL01 - [17], HB02 - [18], CJT02 - [19], 3NJL05 - [20], PNJL06 - [21]. Green points are lattice predictions: LR01, LR04 - [22], LTE03 - [23], LTE04 - [24]. The two dashed lines are parabolas with slopes corresponding to lattice predictions of the slope $d T / d \mu_{B}^{2}$ of the transition line at $\mu_{B}=0[23,25]$. The red circles are locations of the freezeout points for heavy ion collisions at corresponding center of mass energies per nucleon (indicated by labels in GeV) - Section 5 .

