Experimental overview of fluctuations in initial stages

Klaudia Burka
Institute of Nuclear Physics PAN

23.05.2018, Kraków

XIII Workshop on Particle Correlations and Femtoscopy
Introduction

- Particle distribution over azimuthal angle:
 - v_n coefficients driven by:
 - Initial geometry
 - Medium properties
 - $v_2 \rightarrow$ elliptical shape of the collision zone

- Initial state fluctuations studied by:
 - Higher order v_n
 - Multi-particle cumulants

\[
\frac{dN}{d\phi} \propto 1 + \sum_n 2v_n \cos[n(\phi - \Psi_n)]
\]

System symmetry \rightarrow elliptic flow, v_2

Fluctuations \rightarrow triangular flow, v_3
Simultaneous measurements of v_2, v_3, v_4, ... provide better understanding of initial states and medium properties.

Comparison of v_n measured with different methods is direct probe of flow fluctuations.

Xe+Xe collisions provide a chance to bridge the gap between large and small systems.
Methodology

✧ **Two-particle correlations (2PC) and Scalar-product (SP) methods**

- Correlating tracks with Q-vectors at forward rapidities
- Non-flow suppressed by large $\Delta \eta$-gap ($\Delta \eta > 2$)

\[
u_2(2) = \langle v_2 \rangle^2 + \sigma_v^2
\]

✧ **Multi-particle cumulants**:

- Correlating tracks at mid-rapidity with each other
- Analytically suppress non-flow
- Sensitive to flow fluctuations

\[
u_n(4) \approx \langle v_2 \rangle^2 - \sigma_v^2
\]

References

arXiv:0809.2949 [nucl-ex]
Recent results of v_n measured in Xe+Xe and Pb+Pb systems at the LHC:

ATLAS
- Xe+Xe@5.44TeV: ATLAS-CONF-2018-011
- Pb+Pb@5.02TeV: ATLAS-CONF-2016-105

ALICE
- Xe+Xe@5.44TeV: arXiv:1805.01832
- Pb+Pb@5.02&2.74 TeV: arXiv:1804.02944

CMS
- Xe+Xe@5.44TeV: HIN-18-001
- Pb+Pb@5.02TeV: HIN-16-018, Phys. Lett. B 776 (2017) 195
Pb+Pb collisions
$v_n(p_T)@\text{Pb+Pb} \ 5.02 \text{ TeV}$

- Measurement of the v_n in Pb+Pb at $\sqrt{s_{NN}} = 5.02$ TeV allowed to reach high p_T of 25 GeV
- Harmonics measured up to $n=7$ with SP
- Weak η dependence
- The v_n at $\sqrt{s_{NN}}=2.76$ and 5.02 TeV energies are similar
$v_n(p_T)@Pb+Pb$ 5.02 TeV

- v_n at high-p_T: up to 100 GeV
 - Multi-particle $v_2 \{4,6,8\}$
 - $v_2 \{SP\}$ & $v_3 \{SP\}$
- At low p_T results follow the trend:
 $v_2\{SP\} > v_2\{4\} \approx v_2\{6\} \approx v_2\{8\}$
- Positive v_2 values up to $p_T \sim 60-80$ GeV
- v_3 values are consistent with zero for $p_T > 20$ GeV
Clear hierarchy $v_{n+1} > v_n$ is observed

- v_2 is strongly dependent on event centrality and is largest in mid-central events (30-50%)
- higher order v_n show weak centrality dependence

ALICE: The relative variation of these flow coefficients between 2.76 & 5.02 TeV

- All harmonics are observed to increase with energy, between about 2 and 10%
Xe+Xe collisions
$v_n(p_T)@Xe+Xe$ 5.44 TeV

- Measured v_n up to $n=5$, wide p_T range (20 GeV for v_2)
- Typical p_T dependence is observed
- v_2 dominant except the most central collisions
- v_n measured with higher order correlations smaller
 - suppressed non-flow
 - impact of fluctuations

ATLAS-CONF-2018-011
$v_2(p_T)@Xe+Xe$ 5.44 TeV

- $v_2\{2\} > v_2\{4\}$
 - Event-by-event fluctuations

- $v_2\{4\} \approx v_2\{6\} \approx v_2\{8\}$
 - Collectivity

CMS Preliminary

$XeXe \sqrt{s_{NN}} = 5.44$ TeV

CMS-PAS-HIN-18-001
$v_3(p_T)@Xe+Xe$ 5.44 TeV

- $v_3\{2\} > v_3\{4\}$
- Event-by-event fluctuations
- Larger than for v_2

CMS Preliminary

$\sqrt{s_{NN}} = 5.44$ TeV

CMS-PAS-HIN-18-001
\(v_2(p_T)@\text{Xe+Xe} \) 5.44 TeV vs. \(\sqrt{s} @\text{Pb+Pb} \) 5.02 TeV

- \(v_2 \) in Xe+Xe vs. Pb+Pb
 - \(v_2[\text{Xe+Xe}] \) larger than \(v_2[\text{Pb+Pb}] \) in central events
 - Larger differences at intermediate \(p_T \)

\[\text{ALICE: arXiv:1805.01832} \]
$v_3(p_T)@\text{Xe+Xe \ 5.44 TeV vs. @Pb+Pb \ 5.02 TeV}$

✧ Overall good agreement between Xe+Xe and Pb+Pb

ALICE: arXiv:1805.01832
$v_n(p_T)@\text{Xe+Xe}$ 5.44 TeV vs. @\text{Pb+Pb} 5.02 TeV

- **Central collisions:**
 - $v_n[\text{Xe+Xe}]$ larger than $v_n[\text{Pb+Pb}]$
 - Main effect: fluctuations

- **Peripheral collisions:**
 - $v_n[\text{Pb+Pb}]$ larger than $v_n[\text{Xe+Xe}]$
 - Viscous effects are dominant

- CMS - PAS - HIN - 18 - 001
- CMS - PAS - HIN - 16 - 018

23/05/18

Klaudia Burka - WPCF2018
$v_n(\text{centrality})@\text{Xe+Xe} 5.44 \text{ TeV}$

vs.

$v_n(\text{centrality})@\text{Pb+Pb} 5.02 \text{ TeV}$

- Integrated v_2 is higher in most central events for Xe+Xe collisions
 - Elongated Xe shape
 - Smaller $N_{\text{part}} \rightarrow$ larger fluctuations

- Reduced value in mid-central and peripheral
 - smaller initial eccentricities
 - viscous corrections

- v_3: the increase in most central events is less pronounced

- Ratio is similar for different p_T intervals

- Consistent with predictions
\[v_n(\text{centrality})@\text{Xe+Xe} \ 5.44 \ TeV \]
\[v_n(\text{centrality})@\text{Pb+Pb} \ 5.02 \ TeV \]

- **\(v_2 \):** larger < 35\% in central
 - larger IS fluctuations + nuclear deformation

- **\(v_2 \):** smaller ~10\% in semi-central and peripheral
 - smaller radial flow and/or larger viscous effects

- **\(v_3 \):** larger in all centralities, decreasing from central to peripheral
 - larger IS fluctuations

- Quantitatively described by models up to a few \%
Summary

✧ A lot of new, interesting results!
 • Not enough time to show everything

✧ First measurement of flow in Xe+Xe by ATLAS, ALICE and CMS

✧ Comparing Xe+Xe to Pb+Pb
 • Approximate transverse energy scaling observed, broken in central collisions
 • Differences attributed to larger initial state fluctuations, smaller radial flow and/or larger viscous effects
$v_n(p_T)@Xe+Xe$ 5.44 TeV vs. @Pb+Pb 5.02 TeV

- $v_2(p_T)$ in Xe+Xe vs. Pb+Pb, mid-central collisions

- At fixed centrality differences increase with p_T
 - viscous effects and/or radial flow

- Two centrality classes with similar transverse densities consistent with each other

ALICE: arXiv:1805.01832

Model parameters: MC Glauber constituent quarks ($q=3$)
- Xe-Xe 20-30%: $1/S \frac{dN_{ch}}{d\eta} \sim 10$ fm$^{-2}$, $R \sim 4.0$ fm
- Pb-Pb 30-40%: $1/S \frac{dN_{ch}}{d\eta} \sim 10$ fm$^{-2}$, $R \sim 4.0$ fm
- Xe-Xe 30-40%: $1/S \frac{dN_{ch}}{d\eta} \sim 8$ fm$^{-2}$, $R \sim 3.6$ fm