Wounded quark emission function at the top RHIC energy

Michał Barej

AGH University of Science and Technology, Kraków, Poland

in collaboration with Adam Bzdak and Paweł Gutowski

Outline

1. Wounded nucleon and wounded quark models
2. Wounded nucleon/quark emission functions
3. Predictions for $dN_{ch}/d\eta$ and comparison with PHENIX results
4. Future plans
5. Conclusions
Heavy ion collisions

- **Wounded nucleon model (WMN)**

- **Wounded quark model (WQM)**

Figure: http://cerncourier.com/cws/article/cern/53089
Centrality definition

Collision centrality defined by multiplicity of produced charged particles N_{ch}

Asymmetric collisions

Data $d+Au$ at $\sqrt{s_{NN}} = 200$ GeV

PHOBOS data

- $d+Au$ at $\sqrt{s_{NN}} = 200$ GeV (RHIC)

Figure: B. B. Back et al. [PHOBOS Collaboration], Phys. Rev. C 72, 031901 (2005)
Wounded nucleon/quark emission function

- In WNM, WQM:

\[
\frac{dN_{ch}}{d\eta} = w_L F(\eta) + w_R F(-\eta)
\]

- \(F(\eta) \) - wounded source emission function
 - \(w_L \) - mean number of wounded sources in left-going nucleus
 - \(w_R \) - same in right-going

- If \(w_L \neq w_R \):

\[
F(\eta) = \frac{1}{2} \left[\frac{N(\eta) + N(-\eta)}{w_L + w_R} + \frac{N(\eta) - N(-\eta)}{w_L - w_R} \right]
\]

- where \(N(\eta) := \frac{dN_{ch}}{d\eta} \)
Our approach

\[F(\eta) = \frac{1}{2} \left[\frac{N(\eta) + N(-\eta)}{w_L + w_R} + \frac{N(\eta) - N(-\eta)}{w_L - w_R} \right] \]

- \(N(\eta) = dN_{ch}/d\eta \) taken from PHOBOS data
- \(w_L, w_R \) (wounded nucleons or quarks) - obtained in MC Glauber simulation
- Extract \(F(\eta) \) for different centralities
- Compare WNM and WQM

WNM: MC Glauber

- Draw impact parameter b
- Nucleons positions
 - Au: Woods-Saxon
 - d: Hulthen
- Check whether a pair of nucleons collided
 - $d \leq \sqrt{\sigma_{nn}/\pi}$
 - $\sigma_{nn} = 41$ mb for $\sqrt{s_{NN}} = 200$ GeV
- Charged particles production
 - For each wounded nucleon NBD with $\langle n \rangle = 5$ and $k = 1$
- Divide into centrality classes:
 - 0-20%, 20-40%, 40-60%, 60-80%, 80-100%
- Obtain mean w_L, w_R for each centrality class
- $F(\eta) = \frac{1}{2} \left[\frac{N(\eta) + N(-\eta)}{w_L + w_R} + \frac{N(\eta) - N(-\eta)}{w_L - w_R} \right]$
Similar to the WNM case with some differences:

- **Quarks positions**
 \[\varrho(\vec{r}) = \varrho_0 \exp \left(-\frac{r}{a} \right) \]

- **Check whether a pair of quarks collided**
 \[d_q \leq \sqrt{\frac{\sigma_{qq}}{\pi}} \]
 \[\sigma_{qq} = 7 \text{ mb for } \sqrt{s_{NN}} = 200 \text{ GeV} \]

- **Charged particles production**
 - For each wounded quark NBD with \(\langle n \rangle = 5/1.3 \) and \(k = 1/1.3 \)
 \[F(\eta) = \frac{1}{2} \left[\frac{N(\eta)+N(-\eta)}{w_L+w_R} + \frac{N(\eta)-N(-\eta)}{w_L-w_R} \right] \]
The wounded nucleon emission functions

Figure: Phys. Rev. C 97, no. 3, 034901 (2018)
The wounded quark emission functions

Figure: Phys. Rev. C 97, no. 3, 034901 (2018)
Observations

- In WNM shape of $F(\eta)$ differs for various centrality bins.
- In WQM functions have universal shape.
- There are limits of this approach:
 - $|\eta| \leq 3$
 - $w_L \neq w_R$
- Assuming $F_q(\eta)$ has an universal shape also for various colliding nuclei, we can predict measurable $dN_{ch}/d\eta$ for different collisions...

$$
\frac{dN_{ch}}{d\eta} = w_L F_q(\eta) + w_R F_q(-\eta)
$$
PHENIX request: \(d+Au\)

\[
\frac{dN_{ch}}{d\eta} = w_L F_q(\eta) + w_R F_q(-\eta)
\]

Figure: arXiv:1712.02618v2 [hep-ph]
PHENIX request: p+Au

Figure: arXiv:1712.02618v2 [hep-ph]
PHENIX request: 3He+Au

3He nucleons positions from:

Figure: arXiv:1712.02618v2 [hep-ph]
PHENIX request: $p+\text{Al}$

Al - deformed nucleus:

$$\varrho(r, \theta, \varphi) = \varrho_0 \left[1 + \exp \left(\left(r - R(1 + \beta_2 Y_{20}(\theta) + \beta_4 Y_{40}(\theta)) \right)/a \right) \right]^{-1}$$

Figure: arXiv:1712.02618v2 [hep-ph]
Comparison with new PHENIX results

Good agreement with PHENIX data for central collisions for different systems!

Figure: D. McGlinchey — PHENIX $dN_{ch}/d\eta$ in small systems — Quark Matter 16 May 2018
Comparison with new PHENIX results

Good agreement with PHENIX data for all collision centralities for p+Au!

Figure: D. McGlinchey — PHENIX $dN_{ch}/d\eta$ in small systems — Quark Matter 16 May 2018
Comparison with new PHENIX results

Good agreement with PHENIX data for **all centralities** and for **all small systems**!

Figure: D. McGlinchey — PHENIX $dN_{ch}/d\eta$ in small systems — Quark Matter 16 May 2018
Limited η range of application

![Graph showing $F_q(\eta)$ as a function of η for different centrality intervals. The graph includes a legend indicating the colors for min-bias, 0-20, 20-40, 40-60, and 60-80 centrality classes. The graph highlights the wounded quark model with data points and error bars. The figure is from Phys. Rev. C 97, no. 3, 034901 (2018).]
Unwounded quarks in wounded nucleons

- Nucleon is wounded if at least one of its quarks is wounded.
- If 1 quark is wounded, there are 2 more unwounded quarks remaining!

Conclusions

- Wounded quark emission function has an universal shape (within uncertainties)
- Wounded nucleon emission function looks worse
- Latest PHENIX results show that one common wounded quark emission function describes $p+Al$, $p+Au$, $d+Au$, ^3He+Au collisions for different centralities reasonably well
- Plan for near future: take unwounded quarks into consideration - regions $|\eta| > 3$ and study $Au+Au$, $Cu+Cu$ collisions
$dN_{ch}/d\eta$ for d+Au from min-bias $F_q(\eta)$
Another test: \(F_q(\eta) - F_q(-\eta) \)

\[
\begin{align*}
F_q(\eta) - F_q(-\eta) \\
\text{min-bias} \\
0-20 \\
20-40 \\
40-60 \\
60-80
\end{align*}
\]

Figure: MB, A. Bzdak and P. Gutowski, Phys. Rev. C 97, no. 3, 034901 (2018)