Recent results on flow and correlations from the ATLAS experiment

Adam Trzupek on behalf of the ATLAS experiment Institute of Nuclear Physics PAS, Kraków, Poland

XIII Workshop on Particle Correlations and Femtoscopy, WPCF 2018 Kraków, Poland, May 22-26, 2018

Motivation

 Large azimuthal anisotropy observed at RHIC and the LHC is one of the main signatures of quark-gluon plasma (QGP) formed in heavy-ion collisions

Azimuthal anisotropy is "driven" by asymmetry in initial geometry

- Space-time evolution of QGP described by hydrodynamic models
 - Transport parameters (viscosity, η/s ,..)
 - Equation of state (EOS) nonlinearities
- QGP dynamics is constrained by flow harmonics and their correlations

Recent ATLAS azimuthal flow measurements

- Flow harmonics from multi-particle correlations in 5.44 TeV Xe+Xe and 5.02 TeV Pb+Pb collisions ATLAS-CONF-2018-011
- Flow decorrelations in 2.76 TeV and 5.02 TeV Pb+Pb collisions ATLAS, Eur. Phys. J. C 76 (2018) 142
- v_n mean p_T correlations in 5.02 TeV Pb+Pb collisions ATLAS-CONF-2018-008

ATLAS Detector

v_n {4} (n=2,3) harmonics – p_T dependence

- Recently ATLAS has measured v_n using multiparticle correlations in 5.44 TeV Xe+Xe and 5.02 TeV Pb+Pb collisions $\langle corr_n \{2k\} \rangle \equiv \langle cos[n(\varphi_1 + \dots - \varphi_{k+1} - \dots)] \rangle = \langle v_n^{2k} \rangle$
- Using cumulants suppresses "non-flow" correlations, e.g. negative $c_n\{4\} = \left\langle \left\langle corr_n\{4\} \right\rangle \right\rangle - 2\left\langle \left\langle corr_n\{2\} \right\rangle \right\rangle^2$

- v_2 strongly depends on centrality interval ($\neq 0$ at high p_{τ})
- v₃ only weakly depends on centrality

ATLAS-CONF-2018-011

 $V_{n}{4} = \sqrt[4]{-C_{n}{4}}$

Event-by-Event v_n fluctuations

• $v_2{4}/v_2{2PC} \approx 0.5 - 0.7$ for Xe+Xe collisions

- Significant fluctuations in initial geometry (PRL 112 (2014) 082301)

 For Xe+Xe collisions v₂{6}/v₂{4}, ~ 0.98-0.99 and smaller than for Pb+Pb collisions → p(v_n) not fully described by Gaussian function

c_n{4} cumulants in Xe+Xe and Pb+Pb collisions

- c₃{4} scale better with N_{part}
 Fluctuations driven by # of sources
- Similar scaling is observed for c₄{4}

Symmetric and asymmetric cumulants

• Study correlations $v_2 - v_3$ and $v_2 - v_4$ through symmetric cumulants $sc_{n,m}\{4\} = \langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle$

• non-linear v_2 correlated with v_4 (nsc_{2,4}{4} & nac_{2,4}{3}>0)

Measurement of flow decorrelation

• Flow vectors measured with charged particle tracks over $|\eta| < 2.5$

$$\boldsymbol{q}_n \equiv \frac{\sum_i w_i e^{in\phi_i}}{\sum_i w_i}$$

Flow vector defines event plane angle Φ_n

At forward rapidity reference flow vector measured from the energy deposits in FCal calorimeter towers, $|\eta_{ref}| > 4$

• The decorrelation between flow vectors (harmonics) is measured at $-\eta$ and η with respect to η_{ref} with correlator Eur. Phys. J. C 76 (2018) 142

$$r_{n|n;k}(\eta) = \frac{\left\langle \boldsymbol{q}_n^k(-\eta) \boldsymbol{q}_n^{*k}(\eta_{\text{ref}}) \right\rangle}{\left\langle \boldsymbol{q}_n^k(\eta) \boldsymbol{q}_n^{*k}(\eta_{\text{ref}}) \right\rangle}$$

• r is sensitive to breakdown of the factorization of two-particle flow harmonics into single-particle flow harmonics

- w/o decorrelation: r = 1

Elliptic flow de-corelations in Pb+Pb collisions ¹⁰

Eur. Phys. J. C 76 (2018) 142

- r_{2|2;1} show significant magnitude of decorrelation (r<1)
- r_{2|2,1} show a linear decrease with η except in the most central collisions

$$r_{n|n;k}(\eta) \approx 1 - 2F_{n;k}^{\mathrm{r}}\eta$$

• Linear decrease of $r_{n|n;1}$ with η also observed for n = 3 & 4

Centrality and energy dependence of flow decorrelation ¹¹

v_n- mean p_T correlations in 5.02 TeV Pb+Pb collisions

$$\rho = \frac{cov(v_n\{2\}^2, [p_{\mathrm{T}}])}{\sqrt{var(v_n\{2\}^2)_{dyn}}\sqrt{c_k}}$$

The modified Pearson's coefficient

event mean p_T

Dynamical (physical) v_n^2 fluctuations, var_{dyn} EPJ. C74 (2014) 3157

$$var(v_n^2)_{dyn} = v_n \{2\}^4 - v_n \{4\}^4 = \langle corr_n \{4\} \rangle - \langle corr_n \{2\} \rangle^2$$

Dynamical mean transverse momentum fluctuations PRC 72 (2005) 044902

$$c_{k} = \left\langle \frac{1}{(\sum_{b} w_{b})^{2} - \sum_{b} w_{b}^{2}} \sum_{b} \sum_{b' \neq b} w_{b} (p_{\mathrm{T},b} - \langle [p_{\mathrm{T}}] \rangle) w_{b'} (p_{\mathrm{T},b'} - \langle [p_{\mathrm{T}}] \rangle) \right\rangle$$

$$\langle \rangle \text{ - denotes averaging over events}$$

Covariance $cov(v_n^2, [p_T])$

- Covariance $cov(v_n^2, [p_T])$ obtained in 4 p_T ranges
- A rapid increase with N_{ch} from negative value in peripheral events is observed for $cov(v_2^2, [p_T])$
- The $cov(v_3^2, [p_T])$ is weakly changing with N_{ch}
- The N_{ch} -dependence of $cov(v_4^2, [p_T])$ is similar to $cov(v_2^2, [p_T])$

Dynamical transverse momentum and v_n² fluctuations

- c_k decreases with increasing N_{ch}
- Var(v_n²) after an increase with N_{ch} at low multiplicity, a maximum is reached. For higher N_{ch} a decrease is observed similar dependence to v_n vs N_{ch}

 $var(v_{2}^{2}^{2})_{dyn} > var(v_{3}^{2}^{2})_{dyn} > var(v_{4}^{2}^{2})_{dyn}$

The modified Pearson's coefficient (N_{part})

- For v₂: negative at low N_{part}, then rapid rise with maximum ρ(320) ~ 0.25 and fall in the most central collisions
- For v₃: values are much lower than for v₂, also low/or negative at low N_{part}, above N_{part}>100 a weak rise
- For v_4 : significant positive correlations at low N_{part} then decrease with N_{part} and slow increase for $N_{part} > 300$

Theory comparison

ATLAS-CONF-2018-008

- Comparison of ρ for v_2 and v_3 from hydro simulation of the nucleon Glauber MC model for one p_T interval: 0.5-2 GeV
- Predictions for ρ for v_2 and v_3 consistent with data. Experimental results have much better precision

Summary

• Significant flow harmonics fluctuations observed in 5.44 TeV Xe+Xe and in 5.02 TeV Pb+Pb collisions

- •Results indicate almost Gaussian fluctuations, largest in central collisions and "driven" by fluctuations in initial geometry
- Four-particle symmetric cumulants $sc_{2,3}$ {4}, $sc_{2,4}$ {4} show negative/ positive correlations between v_2 - v_3/v_2 - v_4
- The magnitude of flow decorrelation increases linearly with the rapidity separation between two particles
- Significant values of modified Pearson's correlation coefficients ρ between $v_n{2}^2$ and $[p_T]$ in 5.02 TeV Pb+Pb collisions were measured
 - •For peripheral collisions ρ for v_2 is negative. For other centralities the coefficient is positive and dominant
 - The ρ for v_4 shows non-monotonic behaviour with N_{part}

• Hydrodynamic model predictions are consistent with measured ρ for v_2

Backup

Symmetric and asymmetric cumulants

