Azimuthal correlations in systems of different sizes at the LHC from the CMS

WPCF, Krakow, 2018

A.S. D. BARR Brend

CMS

Milan Stojanovic on behalf of the CMS collaboration VINCA Institute of Nuclear Sciences, University of Belgrade

Introduction

A + A collisions

p + A collisions

 \succ V₂, V₃ \rightarrow initial fluctuations!

 \succ V₂ \rightarrow system geometry

 \succ V₃ \rightarrow initial fluctuations

 \succ V₄ \rightarrow fluctuations + non-linear part

Introduction

Particle distribution over azimuthal angle:

Initial geometry;

with hydrodynamics

Motivation for studying smaller systems

(M)

Motivation for studying smaller systems

CMS

What can we expect in XeXe at TeV energies?

Ideal case – scale invariance, but in reality:

- > Initial geometry fluctuations $\sim 1/R$
- Viscous effects ~1/R
- Quadrupole deformation of the Xe shape

This causes system size invariance breaking!

Motivation for studying smaller systems

XeXe case:

Ideal case – scale invariance, but in reality:

- > Initial geometry fluctuations $\sim 1/R$
- Viscous effects ~1/R
- Quadrupole deformation of the Xe shape

This causes system size invariance breaking!

pPb case:

Does collectivity shows up with higher harmonics?

 \succ What is the origin of this collectivity?

Methodology

➤Two-particle correlations

 \succ Multi-particle cumulants:

$$v_n\{4\} \simeq \langle v_n \rangle - \frac{1}{2} \frac{\sigma_{v_n}^2}{\langle v_n \rangle}$$

Gaussian E-by-E fluctuations: $v_n{4} = v_n{6} = v_n{8}$

v, in XeXe collisions

CMS HIN-18-001

$$\succ$$
 v₂{4} ≈ v₂{6} ≈ v₂{8}

 Collectivity! (Still there!)

$$\succ v_2{2} > v_2{4}$$

Consistent with hydro picture!

v₃ in XeXe collisions

CMS HIN-18-001

- \succ ∨₃{2} > ∨₃{4}
 - E-by-E fluctuation
 - Larger than for V₂

Consistent with hydro picture!

v_n[XeXe]/v_n[PbPb]

v_n in XeXe vs centrality

Good agreement! Hydrodynamics works! Milan Stojand

v_n in pPb vs multiplicity

v_n in XeXe vs centrality

 $t_0 = 0.4 \text{ fm/c}$ $\eta / s = 0.16$

ς/s(T)

$$t_0 = 0.6 \text{ fm/c}$$

T_RENTO + $\eta / s = 0.047$

Phys.Rev.C97 (2018) 034904

Non-Gaussian corrections!

 $\sim v_{3}\{4\}/v_{3}\{2\} \& v_{2}\{4\}/v_{2}\{4\}$

Good description within hydrodynamic picture!

Model makes no difference for two nuclear shapes

v in XeXe & PbPb vs centrality

CM.

v in pPb vs multiplicity

0.9

0.8

Summary

8

XeXe:

- Consistent with PbPb
- \succ Central collisions: v_n[XeXe] > v_n[PbPb]
 - fluctuations •
- \blacktriangleright Peripheral collisions: v_n[PbPb] > v_n[XeXe]
 - viscous effects

- \blacktriangleright In pPb V2, v3 completely dominated by fluctuations
- Non-Gaussian fluctuations in good agreement with hydro, TRENTo, power distribution

Backup slides

CMS HIN-18-001

CM

 $v_{2}{2} > v_{2}{4} \approx v_{2}{6} \approx v_{2}{8}$

Collectivity! (Still there!)

v_3 in XeXe collisions

CMS HIN-18-001

 $v_{3}{2} > v_{3}{4}$

Collectivity! (Still there!)

Milan Stojanovic, QM, Venice 2018

XeXe:

CMS HIN-18-001

$v_n[XeXe]/v_n[PbPb]$