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Outline

Partial correlations (PC) analysis, physical and control random
variables (meaning of centrality)

PC in a superposition approach – placing constraints on sources in
the initial phase

Extracting correlation measures of the initial stage
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Partial correlations



Kindergarden

Sample of children:

1 hight

2 intelligence

Pearson’s correlation matrix:

ρ =

(
1 0.62

0.62 1

)
→ ρ(hight, intelligence) ' 0.6 – large

Hints to wrong conclusions

[W. Krzanowski, Principles of Multivariate Analysis, Oxford U. Press, 2000]
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Kindergarden

Sample of children:

1 hight

2 intelligence

3 age – control (external, nuisance) variable

Pearson’s correlation matrix:

ρ =

 1 0.62 0.84
0.62 1 0.74
0.84 0.74 1


→ ρ(hight, intelligence) ' 0.6 – large

Partial correlation (defined shortly) gives ρ(hight, intelligence • age) ' 0

[W. Krzanowski, Principles of Multivariate Analysis, Oxford U. Press, 2000]
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Definition of partial covariance

n physical variables X = (X1, . . . , Xn), m control variables Z = (Z1, . . . , Zm)

Xi, Zj are vectors in the space of events, i.e., X1 = (X
(1)
1 , X

(2)
1 . . . X

(Nev)
1 ), etc.

Partial covariance:

c(X,X • Z) ≡ c(X,X)− c(X,Z)c−1(Z,Z)c(Z,X)

where c(A,B) is the usual covariance c(Ai, Bj) = 〈AiBj〉 − 〈Ai〉〈Bj〉, where 〈.〉
is the average over events
Diagonalizing c(Z,Z) (orthonormal eigenvectors Uk) yields

c (Xi, Xj • Z) = c(Xi, Xj)−
m∑

k=1

c(Xi, Uk)c(Uk, Xj)

Components of X belonging to the space spanned by Z are projected out

[H. Cramer, Mathematical methods of statistics, Princeton U. Press, 1946]
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Partial correlation

Two physical variables X,Y and one control variable Z:

c(X,Y • Z) = c(X,Y )− c(X,Z)c(Z, Y )

v(Z)

One often uses the correlation = covariance scaled with the averages:

C(X,Y ) =
c(X,Y )

〈X〉〈Y 〉
, V(X) ≡ c(X,X) =

v(X)

〈X〉2

Then

C(X,Y • Z) = C(X,Y )− C(X,Z)C(Z, Y )

V(Z)
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Relation to (more intuitive) conditional covariance

c(Xi, Xj |Z) - evaluate at fixed Z and then average over Z

[Lawrance 1976]: if a sample satisfies E (X|Z) = α+ BZ,
with α a constant and B a constant matrix ⇒

c(Xi, Xj • Z) = c(Xi, Xj |Z)

⇐ shown by [Baba et al. 2005]

Application of conditional covariance by [STAR 2008], where Z is hadron
multiplicity in the reference bin R:

1 Divide R into very narrow subsamples (centrality classes) according to Z

2 Evaluate the covariance between Xi and Xj in each subsample

3 Average obtained covariances over the subsamples
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Graphical proof
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Superposition model



Superposition model

B

initial dynamics

hydro-
dynamics

statistical 
hadronization

 

density of fluid

N-final hadrons

C F

    initial partons

S-initial sources

overlaid distribution of partons

deterministic, no mixing
weak longitudinal push (∼ 20%)

overlaid distribution of hadrons

overlaid detector efficiency
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Superposition model for multiplicities

NA =

SA∑
i=1

mi, A = F,B,C

〈NA〉 = 〈SA〉〈m〉
v(NA) = 〈m〉2v(SA) + v(m)〈SA〉

c(NA, NA′) = 〈m〉2c(SA, SA′), A 6= A′

c(NA, SA′) = 〈m〉c(SA, SA′)

C(SA, SA′) = C(NA, NA′)− δAA′ ω(m)

〈NA〉
≡ C(NA, NA′)

Removed autocorrelations! ω(m) = v(m)
〈m〉 (for Poisson ω(m) = 1)
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Partial correlations in the superposition model

Multiplicities in F,B are physical, multiplicity in C is a control variable

NC constraint:

C(SF , SB •NC) = C(NF , NB)− C(NF , NC)C(NB, NC)

v(NC)

SC constraint:

C(SF , SB • SC) = C(NF , NB)− C(NF , NC)C(NB, NC)

v(NC)

Only measured quantities (hadron multiplicities) on r.h.s.!

C(SF , SB •NC) vs C(SF , SB • SC) ↔ v(NC) vs v(NC)

Method allows us to impose constraints at the level of the initial sources,
based on experimentally available info
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Test of the method



Test on actual simulations

Wounded quark model with GLISSANDO

Bzdak-Teaney model with triangular emission functions

3+1D viscous hydrodynamics from Bożek

Statistical hadronization via THERMINATOR

Wide acceptance, |η‖| ≤ 5.1, divided into 51 bins with ∆η = 0.2

PC of particles compared to PC from the Bzdak-Teaney model
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Triangles
[Bia las-Czyż 2005]: in the d+Au collisions the emission profiles for
wounded nucleons from A and B nuclei are approximate triangles
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Bzdak-Teaney (BT) model

Use the triangles, then:

C(SF , SB) =
v(Q+)

〈Q+〉2
+

v(Q−)

〈Q+〉2
ηF
yb

ηB
yb
,

where Q± = QA ±QB – numbers of wounded quarks

In the central (reference) bin SC at η = 0 we have

C(SF,B, SC) = V (SC) =
v(Q+)

〈Q+〉2

C(SF , SB • SC) =
v(Q−)

〈Q+〉2
ηF
yb

ηB
yb

(the same follows via the condition fixing Q+, which yields v(Q+) = 0)
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Scaled covariance from Bożek’s hydro

Covariance matrices with the auto-correlations removed
Hallmark ridge along the diagonal from resonance decays

(looks as nothing ...)
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Partial: BT vs primordial

central control bin C : −0.1 < η < 0.1

Remarkable agreement of BT and primordial partial correlations
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Partial: BT vs primordial

central control bin C : −0.1 < η < 0.1

No agreement for the NC constraint
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Partial: BT vs π+

Reduce correlations from resonance decays - no direct decays to π+π+
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Sum of left and right constraints

L : −6.1 < η < −5.1, R : 5.1 < η < 6.1

(for BT the same effect as from the central constraint)
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Conjunction of left and right constraints

This correlation vanishes in BT

(fixes both QA and QB , so nothing is left to fluctuate)
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Momentum correlations



Size – radial flow transmutation

[WB, Chojnacki, Obara 2009, Bożek, WB 2012, 2017, Chatterjee, Bożek 2017]
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Size – radial flow transmutation
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Initial size correlations vs pT correlations

Constrain the overall size:
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Conclusions



Conclusions

Partial correlations+superposition model – possibility of imposing
constraints at the level of sources, gaining insight into the initial stage

. . . whereas fixing (even strictly) the number of particles (centrality)
leaves the fluctuation of sources

Feasibility of the method demonstrated on simulated data - would be
great to use on actual data!

Several simultaneous constraints possible, generalization of the
concept of centrality

Other observables: momentum, harmonic flow . . .
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