Partial correlation analysis in ultra-relativistic nuclear collisions

Wojciech Broniowski

WPCF 2018, Cracow, 22-26 May 2018
details in Adam Olszewski+WB, PRC 96(2017)054903 (arXiv:1706.02862)
grant 2015/19/B/ST2/00937

National Science Centre

Outline

- Partial correlations (PC) analysis, physical and control random variables (meaning of centrality)
- PC in a superposition approach - placing constraints on sources in the initial phase
- Extracting correlation measures of the initial stage

Partial correlations

Kindergarden

Sample of children:
(1) hight
(2) intelligence

Pearson's correlation matrix:

$$
\rho=\left(\begin{array}{cc}
1 & 0.62 \\
0.62 & 1
\end{array}\right)
$$

$\rightarrow \rho($ hight, intelligence $) \simeq 0.6-$ large

Hints to wrong conclusions
[W. Krzanowski, Principles of Multivariate Analysis, Oxford U. Press, 2000]

Kindergarden

Sample of children:
(1) hight
(2) intelligence
(3) age - control (external, nuisance) variable

Pearson's correlation matrix:

$$
\rho=\left(\begin{array}{ccc}
1 & 0.62 & 0.84 \\
0.62 & 1 & 0.74 \\
0.84 & 0.74 & 1
\end{array}\right)
$$

$\rightarrow \rho($ hight, intelligence $) \simeq 0.6-$ large
Partial correlation (defined shortly) gives $\rho($ hight, intelligence \bullet age $) \simeq 0$
[W. Krzanowski, Principles of Multivariate Analysis, Oxford U. Press, 2000]

Definition of partial covariance

n physical variables $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right), m$ control variables $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{m}\right)$ X_{i}, Z_{j} are vectors in the space of events, i.e., $X_{1}=\left(X_{1}^{(1)}, X_{1}^{(2)} \ldots X_{1}^{\left(N_{\mathrm{ev}}\right)}\right)$, etc.

Partial covariance:

$$
c(\mathbf{X}, \mathbf{X} \bullet \mathbf{Z}) \equiv c(\mathbf{X}, \mathbf{X})-c(\mathbf{X}, \mathbf{Z}) c^{-1}(\mathbf{Z}, \mathbf{Z}) c(\mathbf{Z}, \mathbf{X})
$$

where $c(\mathbf{A}, \mathbf{B})$ is the usual covariance $c\left(A_{i}, B_{j}\right)=\left\langle A_{i} B_{j}\right\rangle-\left\langle A_{i}\right\rangle\left\langle B_{j}\right\rangle$, where \langle. is the average over events
Diagonalizing $c(\mathbf{Z}, \mathbf{Z})$ (orthonormal eigenvectors U_{k}) yields

$$
c\left(X_{i}, X_{j} \bullet \mathbf{Z}\right)=\mathrm{c}\left(X_{i}, X_{j}\right)-\sum_{k=1}^{m} \mathrm{c}\left(X_{i}, U_{k}\right) \mathrm{c}\left(U_{k}, X_{j}\right)
$$

Components of \mathbf{X} belonging to the space spanned by \mathbf{Z} are projected out
[H. Cramer, Mathematical methods of statistics, Princeton U. Press, 1946]

Partial correlation

Two physical variables X, Y and one control variable Z :

$$
\mathrm{c}(X, Y \bullet Z)=\mathrm{c}(X, Y)-\frac{\mathrm{c}(X, Z) \mathrm{c}(Z, Y)}{\mathrm{v}(Z)}
$$

One often uses the correlation = covariance scaled with the averages:

$$
\mathrm{C}(X, Y)=\frac{\mathrm{c}(X, Y)}{\langle X\rangle\langle Y\rangle}, \quad \mathrm{V}(X) \equiv \mathrm{c}(X, X)=\frac{\mathrm{v}(X)}{\langle X\rangle^{2}}
$$

Then

$$
\mathrm{C}(X, Y \bullet Z)=\mathrm{C}(X, Y)-\frac{\mathrm{C}(X, Z) \mathrm{C}(Z, Y)}{\mathrm{V}(Z)}
$$

Relation to (more intuitive) conditional covariance

$\mathrm{c}\left(X_{i}, X_{j} \mid \mathbf{Z}\right)$ - evaluate at fixed \mathbf{Z} and then average over \mathbf{Z}
[Lawrance 1976]: if a sample satisfies $E(\mathbf{X} \mid \mathbf{Z})=\alpha+\mathbf{B Z}$, with α a constant and \mathbf{B} a constant matrix \Rightarrow

$$
c\left(X_{i}, X_{j} \bullet \mathbf{Z}\right)=c\left(X_{i}, X_{j} \mid \mathbf{Z}\right)
$$

\Leftarrow shown by [Baba et al. 2005]

Application of conditional covariance by [STAR 2008], where Z is hadron multiplicity in the reference bin R :
(1) Divide R into very narrow subsamples (centrality classes) according to Z
(2) Evaluate the covariance between X_{i} and X_{j} in each subsample
(3) Average obtained covariances over the subsamples

Graphical proof

Superposition model

Superposition model

overlaid distribution of partons
deterministic, no mixing
weak longitudinal push ($\sim 20 \%$)
overlaid distribution of hadrons
overlaid detector efficiency

Superposition model for multiplicities

$$
N_{A}=\sum_{i=1}^{S_{A}} m_{i}, \quad A=F, B, C
$$

$$
\begin{aligned}
\left\langle N_{A}\right\rangle & =\left\langle S_{A}\right\rangle\langle m\rangle \\
\mathrm{v}\left(N_{A}\right) & =\langle m\rangle^{2} \mathrm{v}\left(S_{A}\right)+\mathrm{v}(m)\left\langle S_{A}\right\rangle \\
\mathrm{c}\left(N_{A}, N_{A^{\prime}}\right) & =\langle m\rangle^{2} \mathrm{c}\left(S_{A}, S_{A^{\prime}}\right), \quad A \neq A^{\prime} \\
\mathrm{c}\left(N_{A}, S_{A^{\prime}}\right) & =\langle m\rangle \mathrm{c}\left(S_{A}, S_{A^{\prime}}\right)
\end{aligned}
$$

$$
C\left(S_{A}, S_{A^{\prime}}\right)=C\left(N_{A}, N_{A^{\prime}}\right)-\delta^{A A^{\prime}} \frac{\omega(m)}{\left\langle N_{A}\right\rangle} \equiv \bar{C}\left(N_{A}, N_{A^{\prime}}\right)
$$

$$
\omega(m)=\frac{\mathrm{v}(m)}{\langle m\rangle} \quad(\text { for Poisson } \omega(m)=1)
$$

Partial correlations in the superposition model

Multiplicities in F,B are physical, multiplicity in \mathbf{C} is a control variable N_{C} constraint:

$$
C\left(S_{F}, S_{B} \bullet N_{C}\right)=\bar{C}\left(N_{F}, N_{B}\right)-\frac{\bar{C}\left(N_{F}, N_{C}\right) \bar{C}\left(N_{B}, N_{C}\right)}{\mathrm{v}\left(N_{C}\right)}
$$

S_{C} constraint:

$$
C\left(S_{F}, S_{B} \bullet S_{C}\right)=\bar{C}\left(N_{F}, N_{B}\right)-\frac{\bar{C}\left(N_{F}, N_{C}\right) \bar{C}\left(N_{B}, N_{C}\right)}{\overline{\mathrm{v}}\left(N_{C}\right)}
$$

Only measured quantities (hadron multiplicities) on r.h.s.!

Partial correlations in the superposition model

Multiplicities in F,B are physical, multiplicity in \mathbf{C} is a control variable N_{C} constraint:

$$
C\left(S_{F}, S_{B} \bullet N_{C}\right)=\bar{C}\left(N_{F}, N_{B}\right)-\frac{\bar{C}\left(N_{F}, N_{C}\right) \bar{C}\left(N_{B}, N_{C}\right)}{\mathrm{v}\left(N_{C}\right)}
$$

S_{C} constraint:

$$
C\left(S_{F}, S_{B} \bullet S_{C}\right)=\bar{C}\left(N_{F}, N_{B}\right)-\frac{\bar{C}\left(N_{F}, N_{C}\right) \bar{C}\left(N_{B}, N_{C}\right)}{\overline{\mathrm{v}}\left(N_{C}\right)}
$$

Only measured quantities (hadron multiplicities) on r.h.s.!
$C\left(S_{F}, S_{B} \bullet N_{C}\right)$ vs $C\left(S_{F}, S_{B} \bullet S_{C}\right) \leftrightarrow \mathrm{v}\left(N_{C}\right)$ vs $\overline{\mathrm{v}}\left(N_{C}\right)$
Method allows us to impose constraints at the level of the initial sources, based on experimentally available info

Test of the method

Test on actual simulations

- Wounded quark model with GLISSANDO
- Bzdak-Teaney model with triangular emission functions
- 3+1D viscous hydrodynamics from Bożek
- Statistical hadronization via THERMINATOR
- Wide acceptance, $\left|\eta_{\|}\right| \leq 5.1$, divided into 51 bins with $\Delta \eta=0.2$
- PC of particles compared to PC from the Bzdak-Teaney model

Triangles

[Białas-Czyż 2005]: in the $\mathrm{d}+$ Au collisions the emission profiles for wounded nucleons from A and B nuclei are approximate triangles

Bzdak-Teaney (BT) model

Use the triangles, then:

$$
C\left(S_{F}, S_{B}\right)=\frac{\mathrm{v}\left(Q_{+}\right)}{\left\langle Q_{+}\right\rangle^{2}}+\frac{\mathrm{v}\left(Q_{-}\right)}{\left\langle Q_{+}\right\rangle^{2}} \frac{\eta_{F}}{y_{b}} \frac{\eta_{B}}{y_{b}},
$$

where $Q_{ \pm}=Q_{A} \pm Q_{B}$ - numbers of wounded quarks In the central (reference) bin S_{C} at $\eta=0$ we have

$$
\begin{aligned}
& C\left(S_{F, B}, S_{C}\right)=V\left(S_{C}\right)=\frac{\mathrm{v}\left(Q_{+}\right)}{\left\langle Q_{+}\right\rangle^{2}} \\
& C\left(S_{F}, S_{B} \bullet S_{C}\right)=\frac{\mathrm{v}\left(Q_{-}\right)}{\left\langle Q_{+}\right\rangle^{2}} \frac{\eta_{F}}{y_{b}} \frac{\eta_{B}}{y_{b}}
\end{aligned}
$$

(the same follows via the condition fixing Q_{+}, which yields $\mathrm{v}\left(Q_{+}\right)=0$)

Scaled covariance from Bożek's hydro

Covariance matrices with the auto-correlations removed Hallmark ridge along the diagonal from resonance decays
(looks as nothing ...)

Partial: BT vs primordial

central control bin $C:-0.1<\eta<0.1$

Remarkable agreement of BT and primordial partial correlations

Partial: BT vs primordial

central control bin $C:-0.1<\eta<0.1$

No agreement for the N_{C} constraint

Partial: BT vs π^{+}

Reduce correlations from resonance decays - no direct decays to $\pi^{+} \pi^{+}$

Sum of left and right constraints

$$
L:-6.1<\eta<-5.1, \quad R: 5.1<\eta<6.1
$$

(for BT the same effect as from the central constraint)

Conjunction of left and right constraints

This correlation vanishes in BT (fixes both Q_{A} and Q_{B}, so nothing is left to fluctuate)

Momentum correlations

Size - radial flow transmutation

[WB, Chojnacki, Obara 2009, Bożek, WB 2012, 2017, Chatterjee, Bożek 2017]

Size - radial flow transmutation

Initial size correlations vs p_{T} correlations

Constrain the overall size:

Conclusions

Conclusions

- Partial correlations+superposition model - possibility of imposing constraints at the level of sources, gaining insight into the initial stage
- ... whereas fixing (even strictly) the number of particles (centrality) leaves the fluctuation of sources
- Feasibility of the method demonstrated on simulated data - would be great to use on actual data!
- Several simultaneous constraints possible, generalization of the concept of centrality
- Other observables: momentum, harmonic flow...

