Directed flow of heavy flavor dragged by a hot tilted fireball and pushed by electromagnetic field

> Sandeep Chatterjee With: Piotr Bożek AGH-UST, Krakow

based on: Phys. Rev. Lett. **120**, 192301 (2018) (arXiv: 1712.01189); arXiv: 1804.04893

WPCF, Krakow, 24 May, 2018

Directed flow: Electromagnetic origin

Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

Summary

EM field in the initial state

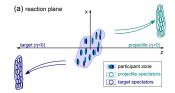
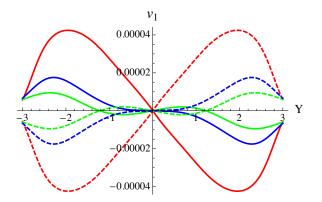


fig. from 1306.4145

- $\mathbf{B} = -B \hat{y}$, *B* decreases as the spectators recede. For non-zero conductivity σ of the medium, this gives rise to a clock-wise **E** in the above reaction plane
- A positive charge at η > 0 experiences B force along x̂ while
 E force along -x̂, the net force resulting in a directed flow v₁


Directed flow: Electromagnetic origin

Directed flow: Geometric origin

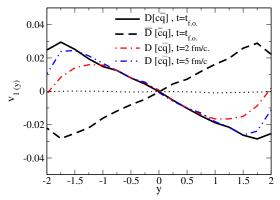
Directed flow: electromagnetic + geometric

Summary

v_1 split between positive and negative charged particles due to EM field

Directed flow: Electromagnetic origin

Directed flow: Geometric origin


Directed flow: electromagnetic + geometric

Summary

Backup

Gursoy, Kharzeev, Rajagopal 2014

1000 times stronger effect on HQ

Das, Plumari, SC, Alam, Scardina, Greco 2016

$$\begin{array}{lll} v_{1}^{\mathsf{avg}} & = & \displaystyle \frac{1}{2} \left(v_{1} \left(D^{0} \right) + v_{1} \left(\overline{D^{0}} \right) \right) \\ v_{1}^{\mathsf{diff}} & = & \displaystyle v_{1} \left(D^{0} \right) - v_{1} \left(\overline{D^{0}} \right) \end{array}$$

 $v_1^{\text{avg}} = 0$, $v_1^{\text{diff}} \neq 0$;


Directed flow: Electromagnetic origin

Directed flow: Geometric origin

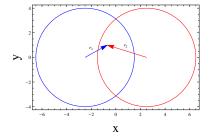
Directed flow: electromagnetic + geometric

Summary

Effect of bulk v_1 on HQ ?

Directed flow: Electromagnetic origin

Directed flow: Geometric origin


Directed flow: electromagnetic + geometric

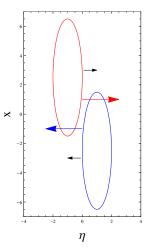
Summary

Backup

fig. from PRL 101 252301 (2008)

entropy deposition in non-central collision

$\mathbf{r}_{1} < \mathbf{r}_{2} \rightarrow \rho\left(\mathbf{r}_{1}\right) > \rho\left(\mathbf{r}_{2}\right)$


Directed flow: Electromagnetic origin

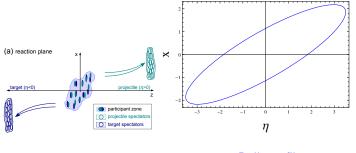
Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

Summary

entropy deposition in non-central collision

Directed flow: Electromagnetic origin


Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

Summary

entropy deposition from participant sources

Tilted bulk: Brodsky et. al. 1977; Adil, Gyulassy 2005; Bialas, Czyz 2005

from 1306.4145

Bulk profile

Directed flow: Electromagnetic origin

Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

Summary

Initial condition for a tilted fireball

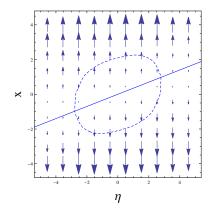
$$\begin{split} s\left(\tau_{0}, x, y, \eta_{||}\right) &= s_{0}\left[\alpha \textit{N}_{coll} + (1 - \alpha)\left(\textit{N}_{part}^{+}\textit{f}_{+}\left(\eta_{||}\right) + \textit{N}_{part}^{-}\textit{f}_{-}\left(\eta_{||}\right)\right)\right]\textit{f}\left(\eta_{||}\right) \end{split}$$

$$f\left(\eta_{||}
ight) = \exp\left(- heta\left(|\eta_{||}| - \eta_{||}^{0}
ight) rac{\left(|\eta_{||}| - \eta_{||}^{0}
ight)^{2}}{2\sigma^{2}}
ight)$$

$$f_{+}\left(\eta_{||}\right) = \begin{cases} 0, & \eta_{||} < -\eta_{\mathcal{T}} \\ \frac{\eta_{\mathcal{T}} + \eta_{||}}{2\eta_{\mathcal{T}}}, & -\eta_{\mathcal{T}} \le \eta_{||} \le \eta_{\mathcal{T}} \\ 1, & \eta_{||} > \eta_{\mathcal{T}} \end{cases}$$

with $f_{-}\left(\eta_{||}
ight)=f_{+}\left(-\eta_{||}
ight)$ (rapidity-odd component)

Bożek, Wyskiel 2010


Directed flow: Electromagnetic origin

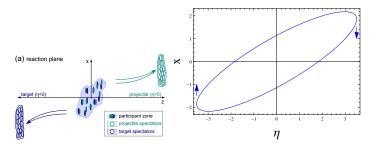
Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

Summary

Tilted bulk \rightarrow directed fluid velocity

Directed flow: Electromagnetic origin


Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

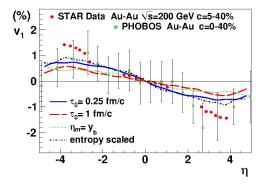
Summary

Tilted bulk \rightarrow directed fluid velocity

Tilted bulk: Brodsky et. al. 1977; Adil, Gyulassy 2005; Bialas, Czyz 2005

from 1306.4145

Bulk directed flow


Directed flow: Electromagnetic origin

Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

Summary

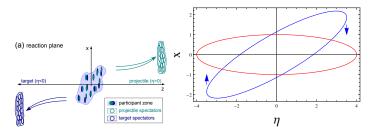
Tilted bulk \rightarrow directed fluid velocity \rightarrow charged particle v_1

Directed flow: Electromagnetic origin

Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

Summary


Backup

Bożek, Wyskiel 2010

- Tilted IC captures the charged particle v₁
- small v₁

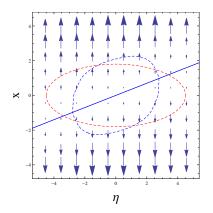
entropy depositing sources: participant vs binary collision sources

HQ from hard processes \rightarrow FB-symmetric Rapidity-even HQ dragged by Rapidity-odd bulk

from 1306.4145

Bulk vs heavy flavor

Directed flow: Electromagnetic origin

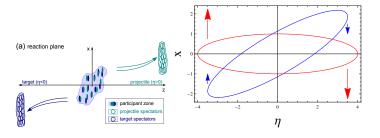

Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

Summary

Heavy Quark Tomography

charm, anti-charm stronger probes of the tilt than the light flavor


Directed flow: Electromagnetic origin

Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

Summary

entropy depositing sources: participant vs binary collision sources

from 1306.4145

 $v_1(HQ) > v_1(Bulk)$

Directed flow: Electromagnetic origin

Directed flow: Geometric origin

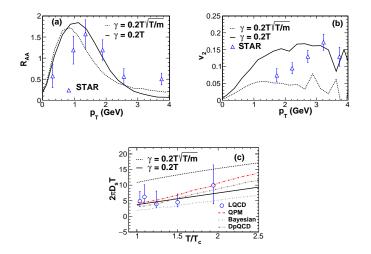
Directed flow: electromagnetic + geometric

Summary

to quantify the heavy flavor v_1

need to calibrate

- the tilt of the bulk: constrained by charged particle v₁, Bożek, Wyskiel 2010
- drag between the bulk and heavy flavor: constrained by heavy flavor R_{AA} and v_2 at mid-rapidity, we use an ansatz $\gamma = \gamma_0 T \left(\frac{T}{m}\right)^{\times}$


Directed flow: Electromagnetic origin

Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

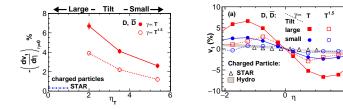
Summary

Calibrating the drag on HQs

Directed flow: Electromagnetic origin

Directed flow: Geometric origin

Directed flow: electromagnetic + geometric


Summary

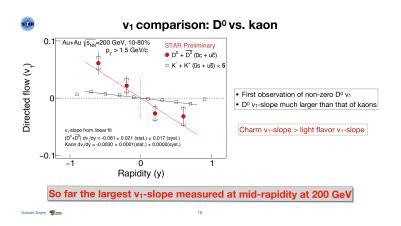
Backup

SC, Bożek PRL, 120, 192301 (2017)

HQ $v_1 \mathcal{O}(10)$ larger !

predicted to be 5 - 20 times larger than charged particle v_1 slope !

SC, Bożek PRL,120, 192301 (2017)


Directed flow: Electromagnetic origin

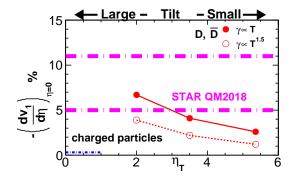
Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

Summary

fresh from QM 2018: largest measured directed flow

Directed flow: Electromagnetic origin


Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

Summar

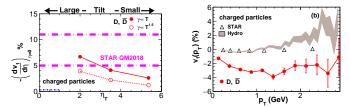
comparison to data

largest measured v_1 : order of magnitude larger than that of charged particle

Directed flow: Electromagnetic origin

Directed flow: Geometric origin

Directed flow: electromagnetic + geometric


Summary

Backup

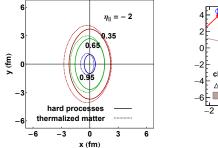
SC, Bożek PRL, 120, 192301 (2017)

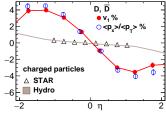
comparison to data

largest measured v_1 : order of magnitude larger than that of charged particle

NOTE: data with $p_T > 1.5$ GeV, similar cut in model will result in larger v_1

```
SC, Bożek PRL, 120, 192301 (2017)
```


Directed flow: Electromagnetic origin


Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

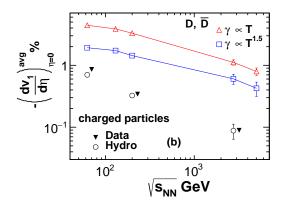
Summary

HQ acquires non-zero $\langle p_X \rangle$ - a clear signal of the initial shift between HQ and bulk

Directed flow: Electromagnetic origin

Directed flow: Geometric origin

Directed flow: electromagnetic + geometric


Summary

Backup

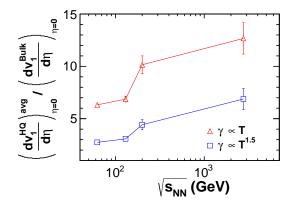
 $\langle {\it p}_{x}
angle \sim$ 40 MeV at $\eta = 1$

SC, Bożek PRL, 120, 192301 (2017)

Beam energy dependence

Directed flow: Electromagnetic origin

Directed flow: Geometric origin


Directed flow: electromagnetic + geometric

Summary

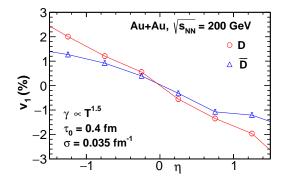
Backup

SC, Bożek 1804.04893

Ratio of HQ to bulk v_1

Directed flow: Electromagnetic origin

Directed flow: Geometric origin


Directed flow: electromagnetic + geometric

Summary

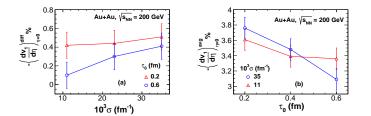
Backup

SC, Bożek 1804.04893

HQ v_1 with Tilt+EM field

Directed flow: Electromagnetic origin

Directed flow: Geometric origin


Directed flow: electromagnetic + geometric

Summary

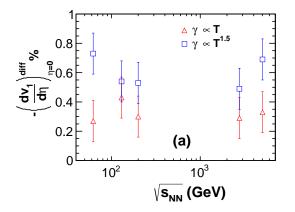
Backup

• $v_1^{\text{avg}} \neq 0$, $v_1^{\text{diff}} \neq 0$ SC, Bożek 1804.04893

Dependence on conductivity and initialization time

Directed flow: Electromagnetic origin

Directed flow: Geometric origin


Directed flow: electromagnetic + geometric

Summary

Backup

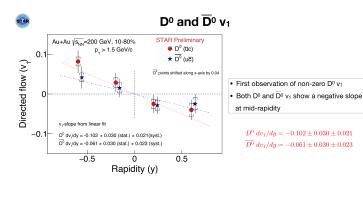
SC, Bożek 1804.04893

Beam energy dependence

Directed flow: Electromagnetic origin

Directed flow: Geometric origin

Directed flow: electromagnetic + geometric


Summary

Backup

SC, Bożek 1804.04893

.

fresh from QM 2018: hint of split in v_1 of D^0 and $\overline{D^0}$

11

Directed flow: Electromagnetic origin

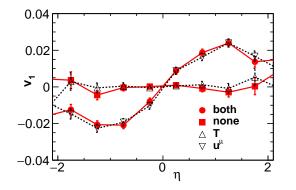
Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

Summary

Summarising

- Heavy flavor directed flow as a probe of 2 initial state physics was discussed: longitudinal profile of matter distribution and the electromagnetic field and medium conductivity
- Order of magnitude larger directed flow was predicted for heavy flavor compared to bulk. Split due to EM field is smaller compared to the average directed flow due to tilted bulk, resulting in same sign flow of both D^0 and $\overline{D^0}$
- Comparison to STAR QM2018 data suggests preference for large tilt (effect of p_T cut is expected to allow for smaller tilt)
- Ratio of HQ to bulk v₁ is predicted to be larger at LHC than at RHIC- stronger drag due to higher temperature
- HQ v_1 adds to the existing list of HQ R_{AA} and v_2 to provide information on the drag coefficient between the bulk matter and HQ


Directed flow: Electromagnetic origin

Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

Summary

BACKUP: what causes the large v_1 : T or u^{μ} ?

Directed flow: Electromagnetic origin

Directed flow: Geometric origin

Directed flow: electromagnetic + geometric

Summary

- FB asymmtery of which hydro field causes the large HQ v_1 ?
- By selectively choosing profiles with broken boost invarinace, we find the HQ v_1 is mainly caused by the FB asymmetric drag by the flow field u^{μ}