WPCF2018 Recent theoretical results for electromagnetically induced ultraperipheral reactions of heavy ions

Antoni Szczurek ^{1,2}, Mariola Kłusek-Gawenda ¹, Piotr Lebiedowicz ¹, Wolfgang Schäfer ¹

¹Institute of Nuclear Physics PAN Kraków
²University of Rzeszów
³Institute für Theoretische Physik, Universität Heidelberg

Kraków, May 22-26, 2018

Introduction

Our recent works related to UPC:

- 1. $PbPb \rightarrow PbPbe^+e^-$ and $PbPb \rightarrow PbPb\mu^+\mu^-$
- 2. $PbPb \rightarrow PbPb\rho^0$
- 3. $PbPb \rightarrow PbPb\rho^{0}\rho^{0}$ single versus double scattering
- 4. $PbPb \rightarrow PbPb\pi^{+}\pi^{-}$ and $PbPb \rightarrow PbPb\pi^{0}\pi^{0}$
- 5. $PbPb \rightarrow PbPb\gamma\gamma$ (UPC) extraction of $\gamma\gamma \rightarrow \gamma\gamma$ cross section
- 6. $PbPb \rightarrow PbPbp\bar{p}$ (UPC) $\gamma\gamma \rightarrow p\bar{p}$ as a background to $J/\psi \rightarrow p\bar{p}$ process.
- 7. $PbPb \rightarrow PbPbe^+e^-e^+e^-$ and $PbPb \rightarrow PbPb\mu^+\mu^-\mu^+\mu^-$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

8. $PbPb \rightarrow PbPbJ/\psi$ photoproduction not only in UPC

UltraPeripheral heavy-ion Collisions

- Vector meson photoproduction
- Photon-photon scattering
- Four-lepton production
 - Electrons Muons
- Proton-antiproton production Not only UPC
- Conclusion

- M. K-G, P. Lebiedowicz, A. Szczurek, Light-by-light scattering in ultraperipheral Pb-Pb collisions at energies available at the CERN Large Hadron Collide, Phys. Rev. C93 (2016) 044907,
- M. K-G, W. Schäfer, A. Szczurek, Two-gluon exchange contribution to elastic γγ → γγ scattering and production of two-photons in ultraperipheral ultrarelativistic heavy ion and proton-proton collisions, Phys. Lett. B761 (2016) 399,
- 3. M. K-G, A. Szczurek,

Double scattering production of two positron–electron pairs in ultraperipheral heavy-ion collisions, Phys. Lett. **B763** (2016) 416,

- A. van Hameren, M. K-G, A. Szczurek, From the Single- and double-scattering production of four muons in ultraperipheral PbPb collisions at the Large Hadron Collider, Phys. Lett. B776 (2018) 84,
- M. K-G, P. Lebiedowicz, O. Nachtmann, A. Szczurek, From the γγ → pp̄ reaction to the production of pp̄ pairs in ultraperipheral ultrarelativistic heavy-ion collisions at the C UCC

UltraPeripheral heavy-ion Collisions

Two categories of processes:

(a) photon-photon processes

(b) photon (or its hadron fluctuation) rescattering in the second nucleus

Photoproduction

 $\checkmark \rho^0, J/\psi$

ALICE, ATLAS, CMS, LHCb (208 Pb+ 208 Pb @ $\sqrt{s_{NN}} = 2.76, 3.5, 5.02, 5.5$ TeV)

Nuclear Cross Section

▲□▶▲□▶▲目▶▲目▶ 目 のへで

Photon flux & Form factor

X charge distribution in nucleus

$$N(\omega, b) = \frac{Z^2 \alpha_{em}}{\pi^2 \beta^2} \frac{1}{\omega} \frac{1}{b^2} \times \left| \int d\chi \, \chi^2 \frac{F\left(\frac{\chi^2 + u^2}{b^2}\right)}{\chi^2 + u^2} J_1(\chi) \right|^2$$

$$\beta = \frac{p}{E}, \gamma = \frac{1}{\sqrt{1-\beta^2}}, u = \frac{\omega b}{\gamma \beta}, \chi = k_{\perp} b$$

Form factor

Figure: Elastic scattering of electron-nucleus

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Form factor

&

Photon flux

realistic charge distribution

$$F\left(\mathbf{q}^{2}\right) = \frac{4\pi}{|\mathbf{q}|} \int \rho(r) \sin(|\mathbf{q}|r) r dr$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

 $\gamma\gamma \to \pi\pi$

 M. K-G and A. Szczurek, π⁺π⁻ and π⁰π⁰ pair production in photon-photon and in ultraperipheral ultrarelativistic heavy ion collisions, Phys. Rev. C87 (2013) 054908

Both $\gamma\gamma \rightarrow \pi^+\pi^-$ and $\gamma\gamma \rightarrow \pi^0\pi^0$ subprocesses Several resonances (scalar, tensor), continuum, pQCD ala Brodsky-Lepage, hand-bag mechanism

・ロン ・四 と ・ 回 と ・ 日

Total cross section

Good description of the data $\gamma\gamma \rightarrow f_2(1270) \rightarrow \pi\pi$ resonance contribution is dominant

◆ロ〉 ◆御〉 ◆臣〉 ◆臣〉 三臣 - のへで

|cosi

$AA \rightarrow AA ho^0$

ALICE data

 $AA{\rightarrow}AA\rho^{0}$

▲口▶▲圖▶▲≣▶▲≣▶ ■ のQの

 $\gamma N \rightarrow \rho^0 N$

Parameters fixed to describe HERA data: we expect: $\frac{d\sigma(\gamma n \rightarrow \rho^0 n)}{dt} \approx \frac{d\sigma(\gamma p \rightarrow \rho^0 n)}{dt}$

Single ρ^0 meson production

nuclear form factor

A rescattering model for $\gamma A \rightarrow \rho^0 A$ reaction

$$\sigma_{\gamma A \to \rho^{0} A} = \frac{d\sigma_{\gamma A \to \rho^{0} A}(t=0)}{dt} \int_{-\infty}^{t_{max}} dt |F_{A}(t)|^{2} \frac{d\sigma_{\gamma A \to \rho^{0} A}(t=0)}{dt} = \frac{\alpha_{em}\sigma_{bot}^{2}(\rho^{0} A)}{4t_{\rho^{0}}^{2}}$$

$$\text{ classical mechanics Glauber:} \\ \sigma_{tot}(\rho^{0} A) = \int d^{2}\mathbf{r} \left(1 - \exp\left(-\sigma_{tot}(\rho^{0} p) \frac{T_{A}(\mathbf{r})}{D}\right)\right) \right)$$

$$\text{ quantum mechanical Glauber:} \\ \sigma_{tot}^{qm}(\rho^{0} A) = 2 \int d^{2}\mathbf{r} \left(1 - \exp\left(-\frac{1}{2}\sigma_{tot}(\rho^{0} p) \frac{T_{A}(\mathbf{r})}{D}\right)\right) \right)$$

$$\text{ nucleus thickness: } \frac{T_{A}(\mathbf{r})}{dt} = \int dz \rho_{A}\left(\sqrt{|\mathbf{r}|^{2} + z^{2}}\right)$$

$$\sigma_{tot}^{2}(\rho^{0} p) = 16\pi \frac{d\sigma_{\rho^{0} p \to \rho^{0} p}(t=0)}{dt} \frac{d\sigma_{\rho^{0} p \to \rho^{0} p}(t=0)}{dt} = \frac{f_{\rho^{0}}^{2}}{4\pi\alpha_{em}} \frac{d\sigma_{\gamma p \to \rho^{0} p}(t=0)}{dt}$$

$$(\text{VDM}) \frac{d\sigma_{\gamma p \to \rho^{0} p}(t=0)}{dt} = B_{\rho^{0}}(XW^{\epsilon} + YW^{-\eta})$$

$AA \rightarrow AA\rho^0$ vs Glauber model

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへで

Smearing of ρ^0 mass

$$\frac{\mathrm{d}\sigma_{AA\to AA\rho_0}}{\mathrm{d}m\,\mathrm{d}y} = f(m) \frac{\mathrm{d}\sigma_{AA\to AA\rho_0}(y,m)}{\mathrm{d}y}$$
$$f(m) = \frac{|\mathcal{A}(m)|^2 N_{orm}}{\int |\mathcal{A}(m)|^2 N_{orm}\mathrm{d}m}$$
$$\int N_{orm} |\mathcal{A}(m)|^2 \,\mathrm{d}m = 1$$

$$\mathcal{A}(m) = \mathcal{A}_{\mathcal{B}\mathcal{W}} \frac{\sqrt{mm_{\rho^0}\Gamma_{\rho^0}(m)}}{m^2 - m_{\rho^0}^2 + im_{\rho^0}\Gamma_{\rho^0}(m)} + \mathcal{B}_{\pi\pi}$$
running width: $\Gamma_{\rho^0}(m) = \Gamma_{\rho^0} \frac{m_{\rho^0}}{m} \left(\frac{m^2 - 4m_{\pi}^2}{m_{\rho^0}^2 - 4m_{\pi}^2}\right)^{3/2}$

Smearing of ρ^0 mass

$$\mathcal{A}(m) = \mathcal{A}_{\mathcal{BW}} rac{\sqrt{mm_{
ho^0} \Gamma_{
ho^0}(m)}}{m^2 - m_{
ho^0}^2 + im_{
ho^0} \Gamma_{
ho^0}(m)} + \mathcal{B}_{\pi\pi}$$
 $\Gamma_{
ho^0}(m) = \Gamma_{
ho^0} rac{m_{
ho^0}}{m} \left(rac{m^2 - 4m_{\pi}^2}{m_{
ho^0}^2 - 4m_{\pi}^2}
ight)^{3/2}$

Parameter	ZEUS	STAR	ALICE
$m_{ ho^0}$ [GeV]	0.77 ± 0.002	0.775 ± 0.003	0.761 ± 0.0023
Γ _ρ ₀ [GeV]	0.146 ± 0.003	0.162 ± 0.007	0.1502 ± 5.5
$\left \frac{\mathcal{B}_{\pi\pi}}{\mathcal{A}_{\mathcal{B}\mathcal{W}}} \right $ [GeV ^{-1/2}]	0.669	$\textbf{0.89}\pm\textbf{0.08}$	0.5 ± 0.04
m[GeV]	(0.55 - 1.2)	(0.5 - 1.1)	(0.28 - 1.512)

Single ρ^0 meson production

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへで

Single ρ^0 meson production

GM	FSZ	KN	Our result		Experimental data
			$m_{ ho^0} = const$	$m_{\rho^0} eq const$	
	\sqrt{s}	S _{NN} = 1	30 GeV; full J	\prime_{ρ^0}	STAR
	490		359	407	$370\pm170\pm80$
	\sqrt{s}	_{NN} = 1	30 GeV; y _ρ ₀ ·	< 1	STAR
	140		130	143	$106\pm5\pm14$
	$\sqrt{s_{NN}} = 200 \text{ GeV}; \text{ full } y_{o^0} $ STAR				STAR
876	934	590	590	646	$391 \pm 18 \pm 55$
$\sqrt{s_{NN}} = 2.76 \text{ TeV}; \text{ full } y_{o^0} $ ALICE					ALICE
			3309	3405	$4200 \pm 100^{+500}_{-600}$
$\sqrt{s_{NN}} = 2.76 \text{ TeV}; y_{\rho^0} < 0.5$ ALICE				ALICE	
			371	380	$425 \pm 10^{+42}_{-50}$

GM - V.P. Gonçalves and M.V.T. Machado, "The QCD pomeron in ultraperipheral heavy ion collisions. IV. Photonuclear production of vector mesons",

Eur. Phys. J. C40 (2005) 519,

FSZ - L. Frankfurt, M. Strikman and M. Zhalov, "Signals for black body limit in coherent ultraperipheral heavy ion collisions" Phys. Lett. **B537** (2002) 51,

KN - S. Klein and J. Nystrand, "Exclusive vector meson production in relativistic heavy ion collisions", Phys. Rev. **C60** (1999) 014903

Double-scattering mechanism

(ho^0 's have negligibly small transverse momenta)

Double-scattering mechanism vs $\gamma\gamma$ fusion

▲□▶▲圖▶▲圖▶▲圖▶ ■ のQ@

Double-scattering mechanism

Broad distributions in $y_1 x y_2$ This reguires broad pseudorapidity coverage (ATLAS, CMS)

Double-scattering mechanism at RHIC

 $|\eta_{\pi}| < 1$

missing mechanisms: $AA \rightarrow AA\rho^{0}(1450) \rightarrow 4\pi$ $AA \rightarrow AA\rho^{0}(1700) \rightarrow 4\pi$

New results on $\gamma p \rightarrow \rho' p$ from H1

Double-scattering mechanism at LHC

Comparison of the mechanisms

Energy	mechanism	σ_{tot} [mb]
$RHIC\;(\sqrt{s_{NN}}=200\;GeV)$	double-scattering	1.6
- -	$ ho^{0} ho^{0}$ in $\gamma\gamma$ fusion	0.1
	$\pi^+\pi^-\pi^+\pi^-$ in $\gamma\gamma$ fusion	0.1

Reference: M. Kłusek-Gawenda and A. Szczurek "Double-scattering mechanism in the exclusive $AA \rightarrow AA\rho^0 \rho^0$ reaction in ultrarelativistic collisions", Phys. Rev. **C89** (2014) 024912

Two-pion production

Reference: M. Kłusek-Gawenda and A. Szczurek, " $\pi^+\pi^-$ and $\pi^0\pi^0$ pair production in photon-photon and in ultraperipheral ultrarelativistic heavy ion collisions", Phys. Rev. **C87** (2013) 054908

$AA \rightarrow AA\gamma\gamma$ - form factor dependence

$\gamma - \gamma$ elastic scattering

Well-known

SQR

æ

VDM-Regge contribution

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

$$\mathcal{A}_{\gamma\gamma\to\gamma\gamma}(s,t) = \sum_{i}^{3} \sum_{j}^{3} C_{\gamma\to V_{i}} \mathcal{A}_{V_{i}V_{j}\to V_{i}V_{j}} C_{\gamma\to V_{j}}$$

$$\approx \left(\sum_{i=1}^{3} C_{\gamma\to V_{i}}\right) \mathcal{A}_{VV\to VV}(s,t) \left(\sum_{j=1}^{3} C_{\gamma\to V_{j}}\right)$$

$$i,j = \rho, \omega, \phi \qquad \qquad \mathcal{A}_{VV\to VV}(s,t) = \mathcal{A}(s,t) \exp\left(\frac{B}{2}t\right)$$

$$\mathcal{A}(s,t) \approx s\left((1+i)C_{\mathbf{R}}\left(\frac{s}{s_0}\right)^{\alpha_{\mathbf{R}}(t)-1} + iC_{\mathbf{P}}\left(\frac{s}{s_0}\right)^{\alpha_{\mathbf{P}}(t)-1}\right)$$

- $\rightarrow C^2_{\gamma \rightarrow V_i} = \frac{e}{f_{V_i}}$
- $\rightarrow C_{\mathbf{P}}, C_{\mathbf{R}}$ Donnachie-Landshoff
- $\rightarrow \alpha_{\mathbf{R}}(t), \alpha_{\mathbf{P}}(t)$ trajectories

number of count

Photon collisions: Photonic billiards might be the newest game!

www.eurekalert.org/pub_releases/2016-05/thni-pcp0

 $\sigma (PbPb \rightarrow PbPb\gamma\gamma) \text{ [nb] at LHC } (\sqrt{s_{NN}} = 5.5 \text{ TeV}) \text{ and FCC } (\sqrt{s_{NN}} = 39 \text{ TeV})$

		box	kes	VDM-	-Regge
	cuts	Frealistic	F _{monopole}	Frealistic	F _{monopole}
	$W_{\gamma\gamma} > 5 \text{GeV}$	306	349	31	36
	$W_{\gamma\gamma} > 5 \text{ GeV}, p_{t,\gamma} > 2 \text{ GeV}$	159	182	7E-9	8E-9
L	$E_{\gamma} > 3 \text{ GeV}$	16 692	18 400	17	18
	E_{γ} > 5 GeV	4 800	5 450	9	611
н	E_{γ} > 3 GeV, $ y_{\gamma} < 2.5$	183	210	8E-2	9E-2
	$E_{\gamma} > 5 \text{ GeV}, y_{\gamma} < 2.5$	54	61	4E-4	7E-4
С	$p_{t,\gamma} > 0.9 \text{ GeV}, y_{\gamma} < 0.7 \text{ (ALICE cuts)}$	107			
	$p_{t,\gamma} > 5.5 \text{ GeV}, y_{\gamma} < 2.5 \text{ (CMS cuts)}$	10			
F	$W_{\gamma\gamma} > 5 \text{GeV}$	6 169		882	
С	$E_{\gamma} > 3 \text{ GeV}$	4 696 268		574	
С					

$AA {\rightarrow} AA\gamma\gamma$ - theoretical predictions vs. experiment

ATLAS Collaboration (M. Aaboud et al.), Nature Phys. 13 (2017) 852 Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

・ロト・日本・日本・日本・日本・日本

s-channel diagrams (leading to peaks at $\sqrt{s} \cong m_M$)

t- and u-channels (leading to broad continua)

 ▷→ P. Lebiedowicz, A. Szczurek, The role of meson exchanges in light-by-light scattering, Phys. Lett. **B772** (2017) 330

 $\eta \& \eta'$ at UPC of AA...

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

$M_{\gamma\gamma} < 5 \text{ GeV} \Rightarrow \pi^0 \pi^0$ Background

- ⇒ M. K-G, A. Szczurek, $\pi^+\pi^-$ and $\pi^0\pi^0$ pair production in photon-photon and in ultraperipheral ultrarelativistic heavy ion collisions, Phys. Rev. **C87** (2013) 054908
 - $\Rightarrow W_{\gamma\gamma} \in (2m_{\pi} 6) \text{ GeV}$
 - total cross section & angular distributions
 - \Rightarrow simultaneously for $\gamma\gamma \to \pi^+\pi^-$ & $\pi^0\pi^0$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $AA \rightarrow AA\gamma\gamma$ for $M_{\gamma\gamma} < 5 \text{ GeV}$? NEW

experiment	pseudorapidity range	other condition
ALICE	-0.9 $<\eta_{\gamma}<$ 0.9	$E_{\gamma} >$ 200 MeV
LHCb	$2.0 < \eta_{\gamma} < 4.5$	$p_{t,\gamma}>$ 200 MeV

AA \rightarrow AA $\gamma\gamma$ for $M_{\gamma\gamma}$ > 2 GeV ?

Our Predictions

▲□▶▲□▶▲□▶▲□▶ □ のへで

Four-lepton production

$$\begin{split} P_{AA} \xrightarrow{\gamma\gamma} AAI^{+}I^{-}}(b; y_{I^{+}}, y_{I^{-}}, p_{t,I}) &= \int N(\omega_{1}, \mathbf{b_{1}}) N(\omega_{2}, \mathbf{b_{2}}) S_{abs}^{2}(\mathbf{b}) \\ &\times \frac{d\sigma_{\gamma\gamma \to l_{1}l_{2}}(W_{\gamma\gamma})}{dz} d\overline{b}_{x} d\overline{b}_{y} \frac{W_{\gamma\gamma}}{2} dW_{\gamma\gamma} dY_{l_{1}l_{2}} \\ \frac{d\sigma_{A_{1}A_{2} \to A_{1}A_{2}l_{1}^{+}l_{2}^{-}l_{3}^{+}l_{4}^{-}}{dy_{I^{+}} dy_{I^{-}} dp_{t,I} dy_{I^{+}} dy_{I^{-}} dp_{t,I}} = \frac{1}{2} \int \frac{dP_{AA}^{I} \gamma\gamma}{AAI^{+}I^{-}}(b; y_{I^{+}}, y_{I^{-}}, p_{t,I})}{dy_{I^{+}} dy_{I^{-}} dp_{t,I}} \\ &\times \frac{dP_{AA}^{II} \gamma\gamma}{AAI^{+}I^{-}}(b; y_{I^{+}}, y_{I^{-}}, p_{t,I})}{dy_{I^{+}} dy_{I^{-}} dp_{t,I}} d^{2}b \\ \sigma_{A_{1}A_{2} \to A_{1}A_{2}I^{+}I^{-}} &= \int \frac{dP_{AA}^{I} \gamma\gamma}{dy_{I^{+}} dy_{I^{-}} dp_{t,I}}}{dy_{I^{+}} dy_{I^{-}} dp_{t,I}} d^{2}b \\ &\times dy_{I^{+}} dy_{I^{-}} dp_{t,I} \end{split}$$

$AA \rightarrow AAe^+e^-$ - calculations vs. data

 ALICE Collaboration (Abbas, E. et al.), Charmonium and e⁺e⁻ pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at √_{SNN} = 2.76 TeV, Eur. Phys. J. C73 (2013) 2617

 $AA \rightarrow AAe^+e^- \& AA \rightarrow AAe^+e^-e^+e^-$

 $p_t > 0.3 \text{ GeV}$

 $p_t > 2.0 \text{ GeV}$

▲口▶▲圖▶▲圖▶▲圖▶ 圖 のQ()~

$AA \rightarrow AAe^+e^- \& AA \rightarrow AAe^+e^-e^+e^-$

 $\sigma_{AA \rightarrow AAe^+e^-e^+e^-}$ $\sigma_{\rm AA \rightarrow AAe^+e^-}$

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$AA \rightarrow AA\mu^+\mu^-$ - calculations vs. data

ATLAS Collaboration,

Measurement of high-mass dimuon pairs from ultraperipheral lead-lead collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the ATLAS detector at the LHC, ATLAS-CONF-2016-025

 $AA \rightarrow AA\mu^+\mu^-$ - form factor

→ realistic

⇒ monopole

RHIC energy

$AA ightarrow AA\mu^+\mu^-$ & $AA ightarrow AA\mu^+\mu^-\mu^+\mu^-$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

• □ > • (□) • • □ > • □ >

$\mathsf{AA}{\rightarrow}\mathsf{AA}\mu^{+}\mu^{-}\mu^{+}\mu^{-}$

impact parameter

 $W_{\gamma\gamma} = M_{4\mu}$

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト

æ

It is difficult to isolate range of SS domination

*DS - double-scattering mechanism

*SS - a NEW single-scattering mechanism

 $AA \rightarrow AA\mu^+\mu^-\mu^+\mu^-$

 $p_{t,\mu^+} \simeq p_{t,\mu^-} \Rightarrow$ construction of similar distributions by ALICE or CMS?

The number of counts for $L_{int} = 1 \text{ nb}^{-1}$

(4 μ), $\sqrt{s_{NN}} = 5.02$ Te	V	(4e), $\sqrt{s_{NN}} = 5.5$ TeV	/
experimental cuts	Ν	experimental cuts	Ν
$ y_i < 2.5, p_t > 0.5 \text{ GeV}$	815	$ y_i < 2.5, p_t > 0.5 \text{ GeV}$	235
$ y_i < 2.5, p_t > 1.0 \text{ GeV}$	53	$ y_i < 2.5, p_t > 1.0 \text{ GeV}$	10
$ y_i < 0.9, p_t > 0.5 \text{ GeV}$	31	$ y_i < 1.0, p_t > 0.2 \text{ GeV}$	649
$ y_i < 0.9, p_t > 1.0 \text{ GeV}$	2	$ y_i < 1.0, p_t > 1.0 \text{ GeV}$	1
$ y_i < 2.4, p_t > 4.0 \; { m GeV}$	≪1		

CMS and ALICE $\Rightarrow p_{t,\text{cut}} = 1 \text{ GeV}$ ALICE $\Rightarrow p_{t,\text{cut}} = 0.2 \text{ GeV}$ ATLAS $\Rightarrow p_{t,\text{cut}} = 4 \text{ GeV}$ Potential background $\downarrow_{\sqrt{SWW}} = 5.5 \text{ TeV}, |y| < 4.9$

Reaction	$p_{t,min} = 0.3 \text{ GeV}$	$p_{t,min} = 0.5 \text{ GeV}$
$PbPb ightarrow PbPb\pi^+\pi^-\pi^+\pi^-$	2.954 mb	8.862 μb
$PbPb ightarrow PbPbe^+e^-e^+e^-$	7.447 μ b	0.704 μ b

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Proton-antiproton pair production

$$\gamma(p_1, \lambda_1) + \gamma(p_2, \lambda_2) \rightarrow p(p_3, \lambda_3) + \bar{p}(p_4, \lambda_4)$$

$$\mathcal{M}_{\lambda_{1}\lambda_{2} \to \lambda_{3}\lambda_{4}}^{f_{2}(1270),f_{2}(1950)} = (-i) \epsilon_{1\mu}(\lambda_{1}) \epsilon_{2\nu}(\lambda_{2}) i \Gamma^{(f_{2}\gamma\gamma)\mu\nu\kappa\lambda}(p_{1},p_{2}) i \Delta_{\kappa\lambda,\alpha\beta}^{(f_{2})}(p_{s}) \\ \times \bar{u}(p_{3},\lambda_{3}) i \Gamma^{(f_{2}p\bar{p})\alpha\beta}(p_{3},p_{4}) v(p_{4},\lambda_{4})$$

M. Diehl, P. Kroll, and C. Vogt, Two-photon annihilation into baryon anti-baryon pairs, Eur. Phys. J. C26 (2003) 567

Free parameters: off-shell form factors, the coupling constants.

$\gamma \gamma \rightarrow \rho \bar{\rho}$ - results vs. data

 $|\cos \theta| < 0.6$

+ hand-bag model

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

э

Angular distributions

 $AA \rightarrow AAp\bar{p} \text{ results} \ W_{\gamma\gamma} = M_{p\bar{p}}$

Ур

Experiment	Cuts	σ [μ b]
ALICE	$p_{t,p} > 0.2 \text{ GeV}, y_p < 0.9$	100
ATLAS	$p_{t,p} > 0.5 \text{ GeV}, y_p < 2.5$	160
CMS	$p_{t,p} > 0.2 \text{ GeV}, y_p < 2.5$	500
LHCb	$p_{t,p} > 0.2 \text{ GeV}, 2 < y_p < 4.5$	104

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Photon-induced reactions at peripheral or semicentral reactions?

$$\begin{array}{l} 0 \quad N(\omega,b) = \frac{Z^2 \alpha_{em}}{\pi^2} \left| \int u^2 J_1\left(u\right) \frac{F\left(\frac{\left(\frac{\omega b}{\gamma}\right)^2 + u^2}{b^2}\right)}{\left(\frac{\omega b}{\gamma}\right)^2 + u^2} \right|^2 \ , \\ \text{ist} \quad N(\omega,b) = \int N^{(0)}\left(\omega,b_1\right) \frac{\theta(R_A - \mathbf{b}_2)}{\pi R_A^2} \mathrm{d}^2 b_1 \ , \\ \text{nd} \quad N(\omega,b) = \int N^{(0)}\left(\omega,b_1\right) \frac{\theta(R_A - \mathbf{b}_2) \times \theta(\mathbf{b}_1 - R_A)}{\pi R_A^2} \mathrm{d}^2 b_1 \end{array}$$

2

 $PbPb \rightarrow PbPbJ/\Psi$ (semicentral/peripheral)

Experimentally one sees a small- p_t enhancement The situation for J/ψ is unique, photoproduction cross section is of a similar size as for incoherent production

Conclusion

- O EPA in the impact parameter space
- $\bigcirc \gamma A \rightarrow V$ (multiple scattering) or $\gamma \gamma \rightarrow X_1 X_2 (X_3 X_4)$
- O Realistic charge distribution
- O Predictions for Pb Pb \rightarrow Pb Pb $\pi^+\pi^-$ and Pb Pb \rightarrow Pb Pb $\pi^0\pi^0$, (fixing model parameters from $\gamma\gamma \rightarrow \pi\pi$ Belle data)
- O Description of the ATLAS data for Pb Pb \rightarrow Pb Pb $\gamma\gamma$ & for ALICE and ATLAS data for Pb Pb \rightarrow Pb Pb I^+I^-
- $O \ \mbox{Pb Pb} \rightarrow \mbox{Pb Pb} \ \mu^+\mu^-\mu^+\mu^- \Rightarrow \sigma_{\mbox{SS}}^{\it NEW} < \sigma_{\it DS}$
- O Difficult to isolate a region where SS dominates
- $\bigcirc \ \sigma_{\textit{AA} \rightarrow \textit{AAI}^+\textit{I}^-} \cong 1000 \times \sigma_{\textit{AA} \rightarrow \textit{AAI}^+\textit{I}^-\textit{I}^+\textit{I}^-}$
- The cross sections for four-lepton production strongly depend on the $p_{t,min}$ and y_l
- O Light-by-light scattering in UPC for $M_{\gamma\gamma}$ < 5 GeV **new project**
- Predictions for Pb Pb \rightarrow Pb Pb $p\bar{p}$ (fixing model parameters from $\gamma\gamma \rightarrow p\bar{p}$ Belle data)

 $\gamma\gamma \rightarrow X_1X_2$ - review

Backup Slides

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

O Multiple Coulomb excitations

Ref.

M. Kłusek-Gawenda, M. Ciemała, W. Schäfer and A. Szczurek, Phys. Rev. C89 (2014) 054907,

"Electromagnetic excitation of nuclei and neutron evaporation in ultrarelativistic ultraperipheral heavy ion collisions"

ρ^0 production in heavy ion UPC with nuclear excitation

(日)

э