Results on resonance production in heavy-ion collisions from the ATLAS experiment at the LHC

Jakub Kremer for the ATLAS Collaboration

May 24, 2018

AGH University of Science and Technology, Kraków, Poland

Introduction

- Focus on final states with quarkonia ($c\bar{c}$, $b\bar{b}$) and charmed *D* mesons which allow to study the behaviour of heavy quarks in nuclear collisions.
- In nucleus-nucleus collisions, heavy quarks are produced at early stages and experience the full evolution of the hot and dense quark-gluon plasma.
- In proton-nucleus collisions, their production is sensitive to cold nuclear matter effects such as initial parton energy loss or nuclear modifications to PDFs.
- Presentation of results from:
 - J/Ψ and $\Psi(2S)$ production in Pb+Pb at $\sqrt{s_{NN}} = 5.02$ TeV: arXiv:1805.04077, submitted to EPJC (*pp* reference measured in $\sqrt{s} = 5.02$ TeV data)
 - J/ Ψ flow in Pb+Pb at $\sqrt{s_{NN}} = 5.02$ TeV: ATLAS-CONF-2018-013
 - D^0/D^* production and D^* flow in p+Pb at $\sqrt{s_{NN}} = 8.16$ TeV: ATLAS-CONF-2017-073
 - J/Ψ and $\Psi(2S)$ production in p+Pb at $\sqrt{s_{NN}} = 5.02$ TeV: Eur. Phys. J. C 78 (2018) 171 (pp reference measured in Run 2 $\sqrt{s} = 5.02$ TeV data)
 - Υ (nS) production in *p*+Pb at $\sqrt{s_{NN}} = 5.02$ TeV: Eur. Phys. J. C 78 (2018) 171 (*pp* reference measured in Run 2 $\sqrt{s} = 5.02$ TeV data)

Run 2

Run 1

ATLAS detector

- $\cdot\,$ Charged particle tracking in $|\eta|<$ 2.5 provided by Inner Detector.
- + Forward calorimeters (FCal, 3.1 $<|\eta|<$ 4.9) used for centrality determination and event plane estimation.
- Muon reconstruction in $|\eta|<$ 2.4, combining measurements in Muon Spectrometer and Inner Detector.

Charmonia in Pb+Pb: Measurement strategy

- Di-muon decay channels considered for J/ Ψ and Ψ (2S).
- Events collected with di-muon trigger.
- \cdot Di-muon mass range: 2.6 $< m_{\mu\mu} <$ 4.2 GeV
- + Kinematic range: 9 $< p_{\rm T}^{\mu\mu} <$ 40 GeV, $|y_{\mu\mu}| <$ 2
- Di-muon candidates are corrected for trigger efficiency, reconstruction efficiency and detector acceptance.
- Yields from two-dimensional unbinned maximum likelihood fits in $m_{\mu\mu}$ and pseudo-proper decay time $\tau = \frac{L_{XY}m_{\mu\mu}}{p_{\mu}^{LH}}$.
- Separated yields from two types of production mechanisms:
 - prompt direct production and feed-down
 - non-prompt from B-hadron decays
- Fits are repeated separately for each considered centrality, $p_{\rm T}^{\mu\mu}$ or $y_{\mu\mu}$ interval.
- For the J/ Ψ flow measurement, also intervals of the di-muon azimuthal angle $|\phi \Psi_2|$ measured with respect to the event plane are considered.

arXiv:1805.04077

- Suppression of J/ Ψ production increases strongly with centrality.
- Similar magnitude and trend of nuclear modification is observed for both prompt and non-prompt J/ Ψ production.

arXiv:1805.04077

- Prompt J/Ψ R_{AA} is increasing slightly with p_T , while the suppression magnitude for non-prompt J/Ψ is constant.
- Similar magnitude of nuclear modification suggests that *B*-hadrons producing non-prompt charmonia are suppressed in a similar way to prompt charmonia.

Charmonia in Pb+Pb: R_{AA} vs. p_T

arXiv:1805.04077

- The measured nuclear modification of prompt J/ Ψ production follows the general trend for charged particles above $p_T > 12$ GeV.
- Observed modification is consistent with both energy loss models and the colour screening picture.

Charmonia in Pb+Pb: R_{AA} ratio vs. centrality

- Prompt $\Psi(2S)$ production is suppressed more strongly than J/Ψ production which is related to the difference in binding energies.
- For non-prompt charmonia, the ratio of nuclear modification factors is consistent with unity - as expected from production in *B*-hadron decays outside the dense nuclear medium.

Charmonia in Pb+Pb: J/Ψ flow vs. centrality

ATLAS-CONF-2018-013

- Elliptic flow coefficients v_2 are evaluated from Fourier fits to azimuthal distributions of J/Ψ yields, measured relative to the event plane angle.
- The event plane angle is estimated via its second order harmonic Ψ_2 using the azimuthal distributions of transverse energy deposits in the forward calorimeters.
- Fits are performed simultaneously for the prompt and non-prompt components.
- Measurement favours non-zero v_2 values for both prompt and non-prompt J/ Ψ , and no significant centrality dependence is observed.

Charmonia in Pb+Pb: J/Ψ flow vs. p_T

ATLAS-CONF-2018-013

- Different trends with p_T for prompt and non-prompt J/Ψ .
- Reasonable agreements with results from ALICE and CMS measurements, despite different kinematic ranges.

Quarkonia in p+Pb: Measurement strategy

Charmonia measurements (similar strategy to Pb+Pb):

- Di-muon mass range: 2.6 $< m_{\mu\mu} <$ 4.2 GeV
- Kinematic range: 8 < p_⊥^{µµ} < 40 GeV, −2 < y_{µµ}^{*} < 1.5
- · Di-muon candidates are corrected for trigger efficiency, reconstruction efficiency and detector acceptance.
- Yields from simultaneous fits in $m_{\mu\mu}$ and τ , separately for each considered centrality, $p_{T}^{\mu\mu}$ or $y_{\mu\mu}^{*}$ interval.

Bottomonia measurements:

- Di-muon decay channels considered for $\Upsilon(nS)$.
- Events collected with di-muon trigger.
- Di-muon mass range: $8.2 < m_{\mu\mu} < 11.7$ GeV
- Kinematic range: $p_{T}^{\mu\mu} < 40 \text{ GeV}, -2 < y_{\mu\mu}^{*} < 1.5$
- Di-muon candidates are corrected for trigger efficiency, reconstruction efficiency and detector acceptance.
- Yields from maximum likelihood fits in $m_{\mu\mu}$, separately for each considered centrality, $p_T^{\mu\mu}$ or $y_{\mu\mu}^*$ interval. 11

Charmonia in p+Pb: R_{pPb} vs. p_T

EPJ C 78 (2018) 171

- Nuclear modification factor $R_{pPb} = \frac{1}{A^{Pb}} \frac{d^2 \sigma_{\mu}^{p+Pb}/dy^* dp_T}{d^2 \sigma_{\mu}^{pp}/dy^* dp_T}$
- Within uncertainties, both the prompt and non-prompt J/Ψ production exhibit an $R_{\rm pPb}$ factor consistent with unity.
- No significant trend in p_{T} is observed.

Charmonia in *p*+Pb: *R*_{pPb} vs. *y**

EPJ C 78 (2018) 171

 Measurements for prompt and non-prompt component show no significant dependence on rapidity.

Bottomonia in p+Pb: R_{pPb} vs. y^*

EPJ C 78 (2018) 171

- The Υ (1S) production in *p*+Pb is found to be suppressed with respect to *pp* collisions for $p_T < 15$ GeV and increases with p_T .
- The observation of suppressed $\Upsilon(1S)$ production at low p_T might be explained by stronger nPDF shadowing in this kinematic range.
- A constant suppression at the level of 0.8 is measured as a function of rapidity.

Quarkonia in *p*+Pb: *R*_{pPb} ratios

EPJ C 78 (2018) 171

- Measurements indicate a slightly increased suppression of prompt $\Psi(2S)$ production relative to J/ Ψ production in the forward direction.
- For both $\Upsilon(2S)$ and $\Upsilon(3S)$, the ratios of integrated R_{pPb} factors to the $\Upsilon(1S)$ modification factor are below unity.

ATLAS-CONF-2017-073

m(Kππ) - m(Kπ) [MeV]

- Reconstructed decay channels: ${\it D}^0 \to {\it K}\pi$ and ${\it D}^* \to {\it D}^0\pi$
- Events collected with minimum bias and high multiplicity track triggers.
- + D^0 candidates are constructed from opposite-sign pairs of charged particle tracks with $p_T > 1$ GeV each.
- Both combinations of kaon and pion masses are considered for the tracks, since no particle identification is applied.
- Track pair mass range: 1.75 $< m(K\pi) <$ 1.96 GeV
- Additional topological requirements are applied to improve the signal to background significance.
- D^* candidates are built by adding a soft pion track with $p_T > 250$ MeV (flow measurement) or $p_T > 400$ MeV (yield measurement) to D^0 candidates.
- *D* meson candidates are corrected for topological selection efficiency, reconstruction efficiency and detector acceptance.
- Yields extracted from maximum likelihood fits to $m(K\pi)$ or $m(K\pi\pi) m(K\pi)$ distributions.

D mesons in *p*+Pb: Cross-sections vs. y^*

ATLAS-CONF-2017-073

- Non-prompt component of D^0 and D^* meson production is subtracted based on FONLL calculation of $b \rightarrow D$ cross-section.
- FONLL predictions for *pp* collisions are extrapolated from $\sqrt{s} = 8$ TeV to $\sqrt{s} = 8.16$ TeV and scaled by the Pb nucleus mass number ($A^{Pb} = 208$).
- Predictions are compatible with measured cross-sections within uncertainties for both D^0 and D^* mesons.

ATLAS-CONF-2017-073

- Forward-backward ratios *R*_{FB} measured for *D* meson production cross-sections in the proton-going (forward) and Pb-going (backward) directions.
- \cdot In the central rapidity range, no significant deviation of $R_{\rm FB}$ from unity is observed.

D mesons in *p*+Pb: *D**-hadron correlations

ATLAS-CONF-2017-073

- D^* -hadron correlations are studied using the two-particle correlation function $C(\Delta \phi)$ defined between pairs of D^* candidates and charged particle tracks, separated in pseudorapidity by $\Delta \eta > 1$.
- Harmonic coefficients $v_{2,2}$ associated with the long-range ridge correlation are extracted via template fits with a separate contribution from the correlation function measured in low-multiplicity (10 < N_{ch} < 80) events.
- Measurements favour non-zero $v_{2,2}$ coefficients for all multiplicity classes.

Summary

- Pb+Pb collisions:
 - Measured strong suppression of charmonia production, increasing with centrality.
 - Similar suppression observed for prompt and non-prompt charmonia, despite different production mechanisms.
 - Measurement favours a non-zero J/Ψ elliptic flow for both the prompt and non-prompt production.
- *p*+Pb collisions:
 - Charmonia nuclear modifications do not deviate significantly from unity, suggesting the absence of cold nuclear matter effects.
 - The $\Upsilon(1S)$ production is modified significantly at low p_T , which might be explained by nuclear shadowing at low x.
 - Measured harmonic coefficients for *D*^{*} mesons tend to be non-zero for all studied multiplicity classes.

Additional slides

Charmonia fit model

$$PDF(m,\tau) = \sum_{i=1}^{7} \kappa_i f_i(m) \cdot h_i(\tau) \otimes g(\tau)$$

- κ_i: normalization factor for each component
- $f_i(m)$: distribution function for mass m
- $h_i(\tau)$: distribution function for pseudo-proper decay time τ
- $g(\tau)$: time resolution function (double Gaussian)

i	Type	Source	$f_i(m_{\mu\mu})$	$h_i(\tau_{\mu\mu})$
1	J/ψ	Prompt	$\omega_1 C B_1(m_{\mu\mu}) + (1 - \omega_1) G_1(m_{\mu\mu})$	$\delta(\tau_{\mu\mu})$
2	J/ψ	Non-prompt	$\omega_1 C B_1(m_{\mu\mu}) + (1 - \omega_1) G_1(m_{\mu\mu})$	$E_1(\tau_{\mu\mu})$
3	$\psi(2S)$	Prompt	$\omega_2 C B_2(m_{\mu\mu}) + (1 - \omega_2) G_2(m_{\mu\mu})$	$\delta(\tau_{\mu\mu})$
4	$\psi(2S)$	Non-prompt	$\omega_2 C B_2(m_{\mu\mu}) + (1 - \omega_2) G_2(m_{\mu\mu})$	$E_2(\tau_{\mu\mu})$
5	Background	Prompt	F	$\delta(\tau_{\mu\mu})$
6	Background	Non-prompt	$E_3(m_{\mu\mu})$	$E_4(\tau_{\mu\mu})$
7	Background	Non-prompt	$E_5(m_{\mu\mu})$	$E_{6}(\tau_{\mu\mu})$

- CB: Crystal Ball function
- G: Gaussian
- E: exponential
- δ : delta function

	J/ψ :	J/ψ yield		$R^{J/\psi}_{ m AA}$	
Source	Uncorr.	Corr.	Uncorr.	Corr.	Uncorr.
Trigger	2 - $4%$	3%	5 - $6%$	5%	< 1%
Reconstruction	4 - 5%	2%	6 - $7%$	2%	< 1%
Fitting	1 - $2%$	1%	1 - $2%$	1%	8 - 9%
$T_{\rm AA}$	—	1 - $8%$	_	1 - $8%$	_
Luminosity	_	_	_	5.4%	_

Examples of $J/\Psi v_2$ fits

Summary of *p*+Pb systematic uncertainties

Collision type	ision type Sources		Excited-state	Ratio
		yield $[\%]$	yield $[\%]$	[%]
n, Dh	Luminosity	2.7	2.7	_
p+PD colligions	Acceptance	1 - 4	1 - 4	—
comsions	Muon reco.	1 - 2	1 - 2	< 1
	Muon trigger	4 - 5	4–5	< 1
	Charmonium fit	2 - 5	4 - 10	7 - 15
	Bottomonium fit	2 - 15	2 - 15	5 - 12
	Luminosity	5.4	5.4	-
nn colligions	Acceptance	1 - 4	1 - 4	—
pp comsions	Muon reco.	1 - 5	1 - 5	< 1
	Muon trigger	5 - 7	5 - 7	< 1
	Charmonium fit	2 - 7	4 - 10	7 - 11
	Bottomonium fit	1 - 15	2 - 15	5 - 12

Charmonia in *p*+Pb: comparison to *Z* bosons

Centrality [%]

Quarkonia in *p*+Pb: self-normalised yields

