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Introduction

Rotation and Polarization

Barnett Effect

Figure: Mechanical rotation of an unmagnetized
metallic object induces magnetization, an
effective magnetic field emerges.

BΩ = Ω/γ

Einstein-de Haas
Effect

Figure: Application of magnetic field
on an unmagnetized metallic object
induces magnetization, body start
rotating (mechanical angular
momentum emerges)
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Introduction

Case of Heavy ion collision experiment

• Global angular momentum J ≈ 104~ (RHIC Au-Au 200 GeV, b=2.5
fm)[arXiv:0711.1253v3 [nucl-th] 18 Feb 2008].
• One can think of a Fluid with the highest vorticity.
• Emerging particle are expected to be globally polarized with their spins on
average pointing along the system angular momentum.

Figure: Geometry of a non-central heavy ion collision
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Introduction

Global Λ-polarization in RHIC experiment

Evidence of the fluid with highest vorticity:

The average polarization P̄H (where H = Λ or Λ̄) from 20− 50% central Au+Au
collisions [Nature 548 (2017) 62-65, arXiv:1701.06657 (nucl-ex)]

Figure: The average polarization versus collision energy
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Introduction

• Present phenomenological prescription used to describe the data make use of
the fact that thermal vorticity is equal to spin polarization tensor.

• In this work using the equilibrium distributions functions for particles of spin 1/2
as an input to the Wigner function and its semi-classical expansion we will show
how a kinetic approach can lead us to the fact that the thermal vorticity and spin
polarization tensor are constant. However, no such conclusion can be drawn
whether they are equal or not.

• I will also discuss the procedure to construct the hydrodynamic framework that
can deal with the spin physics.
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Equilibrium Wigner functions

Equilibrium Wigner Functions

We start with the equilibrium Wigner functions [de-Groot 1980]

W+
eq(x , k) =

1
2

2∑
r,s=1

∫
dP δ(4)(k − p)ur (p)ūs(p)f +

rs (x , p),

W−eq(x , k) = −1
2

2∑
r,s=1

∫
dP δ(4)(k + p)v s(p)v̄ r (p)f−rs (x , p).

We take f +
rs (x , p) and f−rs (x , p) [F. Becattini et al. Annals Phys. 338 (2013) 32]

f +
rs (x , p) =

1
2m

ūr (p)X +us(p), f−rs (x , p) = − 1
2m

v̄s(p)X−vr (p).

m is the (anti)particle mass, while ur (p) and vr (p) are Dirac bispinors.

X± = exp [±ξ(x)− βµ(x)pµ] M±, M± = exp

[
±1

2
ωµν(x)Σµν

]
.

• βµ(x) = uµ(x)/T (x) and ξ(x) = µ(x)/T (x), with µ(x) being the chemical potential.
• The quantity ωµν(x) is the spin polarization tensor, while Σµν = (i/4)[γµ, γν ].
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Equilibrium Wigner functions

Equilibrium Wigner functions

Spin polarization tensor ωµν satisfies the two conditions [W. Florkowski et al. 2017]

ωµνω
µν ≥ 0, ωµν ω̃

µν = 0, where ω̃µν =
1
2
εµναβω

αβ

M± = cosh(ζ)± sinh(ζ)

2ζ
ωµνΣµν .

ζ is defined by the expression

ζ =
Ω

T
=

1
2

√
1
2
ωµνωµν .

Ω plays a role of the spin chemical potential.
The equilibrium Wigner functions

W+
eq(x, k) =

eξ

4m

∫
dP e−β·p

δ
(4)(k − p)

[
2m(m + /p) cosh(ζ) +

sinh(ζ)

2ζ
ωµν (/p + m)Σµν(/p + m)

]
,

W−
eq(x, k) =

e−ξ

4m

∫
dP e−β·p

δ
(4)(k + p)

[
2m(m − /p) cosh(ζ)−

sinh(ζ)

2ζ
ωµν (/p − m)Σµν(/p − m)

]
.

The total Wigner function

Weq(x , k) =W+
eq(x , k) +W−eq(x , k).
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Spinor decomposition of the equilibrium Wigner function

Spinor decomposition of the equilibrium Wigner function

The Wigner functionsW±eq(x , k), being four-by-four matrices satisfying the relations
W±eq(x , k) = γ0W±eq(x , k)†γ0, can always be expanded in terms of the 16 independent
generators of the Clifford algebra

W±eq(x , k) =
1
4
[
F±eq(x , k) + iγ5P±eq(x , k) + γµV±eq,µ(x , k)

+γ5γ
µA±eq,µ(x , k) + ΣµνS±eq,µν(x , k)

]
.

The coefficient functions in the equilibrium Wigner function expansion can be obtained
by the following traces:

F±
eq(x, k) = tr

[
W±

eq(x, k)
]

= 2m cosh(ζ)

∫
dP e−β·p±ξ

δ
(4)(k∓ p),

P±
eq(x, k) = −i tr

[
γ
5W±

eq(x, k)
]

= 0,

V±
eq,µ(x, k) = tr

[
γµW±

eq(x, k)
]

= ± 2 cosh(ζ)

∫
dP e−β·p±ξ

δ
(4)(k∓ p) pµ,

A±
eq,µ(x, k) = tr

[
γµγ

5W±
eq(x, k)

]
= −

sinh(ζ)

ζ

∫
dP e−β·p±ξ

δ
(4)(k∓ p) ~ωµν p

ν
,

S±
eq,µν (x, k) = 2 tr

[
˚µνW±

eq(x, k)
]

=±
sinh(ζ)

mζ

∫
dP e−β·p±ξ

δ
(4)(k∓ p)

[(
pµωνα − pνωµα

)
pα+m2

ωµν

]
.
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Spinor decomposition of the equilibrium Wigner function

Leading-order terms of the coefficient functions in the spin-polarization tensor,

Feq(x, k) = 2m
∫

dP e−β·p±ξ δ(4)(k ∓ p),

Peq(x, k) = 0,

V±
eq,µ(x, k) = ± 2

∫
dP e−β·p±ξ δ(4)(k ∓ p) pµ,

A±
eq,µ(x, k) = −

∫
dP e−β·p±ξ δ(4)(k ∓ p) ω̃µν pν ,

S±
eq,µν (x, k) = ±

1

m

∫
dP e−β·p±ξ δ(4)(k ∓ p)

[(
pµωνα − pνωµα

)
pα+m2

ωµν

]
.

Coefficient functions in equilibrium Wigner function expansion satisfies
kµ V±eq,µ(x , k)−mF±eq(x , k) = 0,
kµ F±eq(x , k)−mV±eq,µ(x , k) = 0,
P±eq(x , k) = 0,
kµA±eq, µ(x , k) = 0,
kµ V±eq,ν(x , k)− kν V±eq,µ(x , k) = 0,
kµ S±eq, µν(x , k) = 0,
kβ S̃±eq,µβ(x , k) + mA±eq, µ(x , k) = 0,

εµναβ kαA± βeq (x , k) + m S±eq, µν(x , k) = 0.
Note that such constraint are also fulfilled by the total Wigner function given by the sum
of the particle and antiparticle contributions.
Also note that the above relationship holds for any form of βµ(x), ξ(x) and ωµν(x).
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Semi-classical expansion

Semi-classical expansion

W(x , k) =
1
4

[F(x , k) + iγ5P(x , k) + γµVµ(x , k) + γ5γ
µAµ(x , k) + ΣµνSµν(x , k)] .

The Wigner function satisfies the equation of the form

(γµKµ −m)W(x , k) = 0; Kµ = kµ +
i~
2
∂µ.

The real parts:
kµVµ − mF = 0,
~
2 ∂
µAµ + mP = 0,

kµF − ~
2 ∂
νSνµ − mVµ = 0,

− ~
2 ∂µP + kβ S̃µβ + mAµ = 0,

~
2 (∂µVν − ∂νVµ)− εµναβkαAβ − mSµν = 0,

The imaginary parts:
~∂µVµ = 0,

kµAµ = 0,
~
2 ∂µF + kνSνµ = 0,

kµP + ~
2 ∂
β S̃µβ = 0,

(kµVν − kνVµ) + ~
2 εµναβ∂

αAβ = 0.

F = F (0) + ~F (1) + ~2F (2) + · · · , P = P(0) + ~P(1) + ~2P(2) + · · · ,

Vµ = V(0)
µ + ~V(1)

µ + ~2V(2)
µ + · · · , Aµ = A(0)

µ + ~A(1)
µ + ~2A(2)

µ + · · · ,

Sµν = S(0)
µν + ~S(1)

µν + ~2S(2)
µν + · · · .
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Semi-classical expansion

Zeroth and first order real parts

Zeroth order real part:
kµV(0)

µ − mF (0) = 0,

P(0) = 0,

kµF (0) − mV(0)
µ = 0,

kβ S̃(0)
µβ + mA(0)

µ = 0,

εµναβkαAβ
(0)

+ mS(0)
µν = 0,

First order real part:
kµV(1)

µ − mF (1) = 0,
1
2∂
µA(0)

µ + mP(1) = 0,

kµF (1) − 1
2∂
νS(0)

νµ − mV(1)
µ = 0,

− 1
2∂µP(0) + kβ S̃(1)

µβ + mA(1)
µ = 0,

1
2

(
∂µV(0)

ν − ∂νV
(0)
µ

)
− εµναβkαAβ

(1)
− mS(1)

µν = 0.

Zeroth order imaginary part:
kµA(0)

µ = 0,

kνS(0)
νµ = 0,

kµV(0)
ν − kνV(0)

µ = 0.

First order imaginary part:
∂µV(0)

µ = 0,

kµA(1)
µ = 0,

1
2∂µF

(0) + kνS(1)
νµ = 0,

kµP(1) + 1
2∂
β S̃(0)

µβ = 0,

kµV(1)
ν − kνV(1)

µ + 1
2 εµναβ ∂

αAβ
(0)

= 0.
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Semi-classical expansion

Kinetic equations for coefficient functions

By solving the coupled equations for zeroth and first order one get the following
equations for the coefficient functions

kµ∂µF(0)(x , k) = 0.

kµ∂µAν(0)(x , k) = 0, kν Aν(0)(x , k) = 0.

To get the equation for the first order coefficient functions one has to go beyond first
order (upto second order) if one does so one can easily show,

kµ∂µF(1)(x , k) = 0,

kµ∂µAν(1)(x , k) = 0, kνAν(1)(x , k) = 0.

One can define explicitly the two cases:

CASE 1:

F (0) = Feq,
P(0) = 0,
V(0)
µ = Veq,µ,
A(0)
µ = Aeq,µ,
S(0)
µν = Seq,µν .

CASE 2:

F (0) = Feq, F (1) = 0,
P(0) = 0, P(1) = 0,
V(0)
µ = Veq,µ, V(1)

µ = 0,
A(0)
µ = 0, A(1)

µ = Aeq,µ,
S(0)
µν = 0, S(1)

µν = Seq,µν .
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Semi-classical expansion Exact Solutions

Extended global equilibrium

In the CASE 1 we find:

kµ∂µFeq(x , k) = 0,

kµ∂µAνeq(x , k) = 0, kν Aνeq(x , k) = 0.

These equations will be exactly fulfilled if the βµ field satisfies

∂µβν(x) + ∂νβµ(x) = 0 (Killing equation)

while the parameter ξ and ωµν are constant (this also means ζ is constant).
Solution to the Killing equaton

βµ(x) = β0
µ +$0

µνxν , β0
µ=constt, $0

µν = − 1
2 (∂µβν − ∂νβµ) = $µν =constt

• It does not constrain that the spin polarization tensor is equal to thermal vorticity.
In the CASE 2 we find:

kµ∂µFeq(x , k) = 0,

kµ∂µ Aνeq(x , k) = 0, kν Aνeq(x , k) = 0,

which leads to the same constraints on βµ, ξ, and ωµν , as in the CASE 1.
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Formulation of hydrodynamics with spin Charge current

Charge current

We use the definition of the charge current introduced in Ref. [de-Groot:1980] to obtain

Nα
eq(x) = tr

∫
d4k γαWeq(x, k) =

∫
d4kVαeq(x, k) =

1
m

∫
d4k kαFeq(x, k)

Nα
eq = 4 cosh(ζ) sinh(ξ)

∫
d3p

(2π)3Ep
pα e−β·p.

This agrees with [W. Florkowski et. al. 2017]. Doing the integral over the momentum
one finds that the charge current is proportional to the flow vector,

Nα
eq = nuα,

where

n = 4 cosh(ζ) sinh(ξ) n(0)(T )

Here n(0)(T ) = 〈(u · p)〉0 is the number density of spin-0, neutral Boltzmann particles,

〈· · · 〉0 ≡
∫

d3p
(2π)3Ep

(· · · ) e−β·p.

We note that the form of Nα
eq(x) holds generally for CASE 1, the result for CASE 2 is

obtained by taking the limit ζ → 0, hence, by replacing cosh(ζ) with unity.

∂αNα
eq(x) = 0.
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Formulation of hydrodynamics with spin Energy-momentum tensor

Energy-momentum tensor

The energy-momentum tensor defined in Ref.[de-Groot:1980] has the form

Tµνeq (x) =
1
m

tr
∫

d4k kµ kνWeq(x, k) =
1
m

∫
d4k kµ kνFeq(x, k).

From above equation one can easily obtain

Tµνeq (x) = 4 cosh(ζ) cosh(ξ)

∫
d3p

(2π)3Ep
pµpνe−β·p.

This agrees again with that given in [W. Florkowski et al. 2017].

Tµνeq (x) = (ε+ P)uµuν − Pgµν .

The energy density and pressure are given by the expressions

ε = 4 cosh(ζ) cosh(ξ) ε(0)(T ), P = 4 cosh(ζ) cosh(ξ) P(0)(T ),

where, ε(0)(T ) = 〈(u · p)2〉0 and P(0)(T ) = −(1/3)〈
[
p · p − (u · p)2]〉0.

Similarly to the case of the charge current, the form of Tµνeq (x) holds in general for
CASE 1, while the result for CASE 2 is obtained by the limit cosh(ζ)→ 1.
The energy-momentum tensor should be conserved,

∂αTαβeq (x) = 0.
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Formulation of hydrodynamics with spin Spin tenor

1. Canonical form

Sλ,µνcan (x) =
1
4

∫
d4k tr

[{
σµν , γλ

}
Weq(x , k)

]
=

1
2
εκλµν

∫
d4k Aeq,κ(x , k)

Sλ,µνcan =
sinh(ζ) cosh(ξ)

ζ

∫
dP e−β·p

(
ωµνpλ + ωνλpµ + ωλµpν

)
=

w
4ζ

(
uλωµν + uµωνλ + uνωλµ

)
,

where we have introduced the spin density w defined by the expression

w = 4 sinh(ζ) cosh(ξ)n(0)(T ).

Limit sinh(ζ)
ζ
→ 1 will give canonical spin tensor for the CASE 2.

Total angular momentum

Ĵµ,αβ(x) = Lµ,αβ(x) + Sµ,αβ(x) = xαTµβ(x)− xβTµα + Sµ,αβ(x).

Conservation of energy momentum and total angular momentum implies

∂µTµν(x) = 0, ∂λJλ,µν(x) = 0,⇒ ∂λSλ,µν(x) = Tµν(x)− T νµ(x) = 0.

We expect

∂λSλ,µνcan (x) = 0.
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Formulation of hydrodynamics with spin Spin tenor

Case of global equilibrium with rigid rotation

In this case, the flow four-vector uµ can be taken in the form

u0 = γ, u1 = − 2 Ω0γ y , u2 = 2 Ω0γ x , u3 = 0,

γ = 1/
√

1− 4Ω2
0r 2 is the Lorentz gamma factor and r =

√
x2 + y2 is distance from

the center of the vortex in the transverse plane.

One can check that such a hydrodynamic configuration leads to the conserved charge
current and conserved energy-momentum tensor.

if,

T = T0γ, µ = µ0γ,Ω = Ω0γ

where, T0, µ0 and Ω0 are constants.

In this case all components of the spin polarization tensor ωµν vanish, except for
ω12 = −ω21 = 2Ω0/T0.

The canonical spin tensor Sλ,µνcan (x) is not conserved,

∂λSλ,01
can (r) = −∂y

[
w(r)

4ζ0
u0(r)

]
ω21 6= 0,
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Formulation of hydrodynamics with spin Spin tenor

2. Phenomenological form

A phenomenological form of the spin tensor has been used [W. Florkowski et al. 2017],

Sλ,µνph (x) =
1
2

∫
dP e−β·p pλtr[(X + − X−)Σµν ].

Carrying out the trace calculation we get

Sλ,µνph (x) =
sinh(ζ) cosh(ξ)

ζ

∫
dP e−β·p pλ ωµν =

w
4ζ

uλωµν ,

which agrees with the expression used in Ref. [Becattini 2009].

One can easily check that in global equilibrium unlike canonical the phenomenological
spin tensor satisfies the conservation law,

∂λSλ,µνph (x) = 0

Which is consistent with the conservation laws of charge current and energy
momentum tensor and with the concept of the global equilibrium.
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Formulation of hydrodynamics with spin Spin tenor

3. de Groot - van Leeuwen - van Weert formulation

The spin tensor introduced by de Groot, van Leeuwen, and van Weert has the form

Sλ,µνGLW =
1
4

∫
d4k tr

[({
σµν , γλ

}
+

2i
m

(
γ[µkν]γλ − γλγ[µkν]

))
Weq(x, k)

]
.

Performing the traces, and then carrying out the integration over k we get

Sλ,µνGLW =
sinh(ζ)cosh(ξ)

m2ζ

∫
dP e−β·ppλ

(
m2ωµν + 2pαp[µων]

α

)
=

w
4ζ

uλωµν +
2 sinh(ζ)cosh(ξ)

m2ζ
sλ,µνGLW

where

sλ,µνGLW = Auλuαu[µων]
α + B

(
∆λαu[µων]

α + uλ∆α[µων]
α + uα∆λ[µων]

α

)
and

B = − 1
β

(
ε(0) + P(0)

)
, A =

1
β

[
3ε(0) +

(
3 +

m2

T 2

)
P(0)

]
= −3B +

m2

T
P(0). (1)

Limit sinh(ζ)
ζ
→ 1 will give the GLW spin tensor for the CASE 2.
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Conservation laws

Conservation laws

One can get the conservation law for charge and energy-momentum by taking zeroth
and first moments of the kinetic equations,

kµ∂µFeq(x , k) = 0

or,

kµ∂µFeq(x , k) = 0.

The main difference between the two is that the moment of later does not involves the
vorticity therefore will lead to perfect fluid description. Spin dynamics gets decoupled in
this case.
In any case, the conservation laws for charge, energy, and momentum are not sufficient
to determine the dynamics of spin and they should be supplemented by information
coming from the equations for the axial coefficients of the equilibrium Wigner function.

kα∂αAµeq(x , k) = 0,

kα∂α Aµeq(x , k) = 0.
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Conservation laws

Conservation laws

Considering the first kinetic equation for the axial coefficient function, we can obtain the
conservation laws for spin tensor in the way as follows,

kα∂α
∫

dP e−β·p
sinh(ζ)

ζ

[
δ(4)(k − p)eξ + δ(4)(k + p)e−ξ

]
ω̃µν pν = 0

kα

2
εµνρσ

{
∂α

∫
dP e−β·p

sinh(ζ)

ζ

[
δ(4)(k − p)eξ + δ(4)(k + p)e−ξ

]
pν ωρσ

}
= 0.

If we multiply above equation by kηεµγλη and then take the moment of above equation.
We will get the conservation of GLW spin tensor.

This suggest that GLW spin tensor, in fact, a more natural choice.

Limit sinh(ζ)
ζ
→ 1 will give conservation of GLW spin tensor for the second kinetic

equation for the axial coefficient function (CASE 2).
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Summary

Summary

We have discussed about the Wigner function (constructed from the local
equilibrium phase space distribution functions for spin-1/2) and it’s spinor
decomposition.

We have analyzed in more detail the case where the Wigner function satisfy
kinetic equation with a vanishing collision term.

We have found, in contrast to many earlier claims found in the literature, Wigner
function approach does not imply a direct relation between the thermal vorticity
and spin polarization, except for the fact that the two should be constant in global
equilibrium.

We have also outlined procedures to formulate hydrodynamics with spin from the
kinetic equations derived from Wigner function.

We have found that it would be useful to construct the hydrodynamics with spin
with the help of the spin tensors derived by de Groot, van Leeuwen, and van
Weert.

Future Plan: Our next task is to incorporate electromagnetic fields and collision term
in the present framework.

Avdhesh Kumar (IFJ PAN) May 25, 2018 23 / 26



Summary

THANK YOU
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Summary

Back up slides

Global thermodynamic equilibrium (Zubarev, Becattini)

ρ̂(t) = exp

[
−
∫

d3Σµ(x)

(
T̂µν(x)bν(x)− 1

2
Ĵµ,αβ(x)ωαβ(x)− ξ(x)N̂µ

)]
.

Here d3Σµ is an element of a space-like, three-dimensional hypersurface Σµ. We can
take it as, d3Σµ = (dV , 0, 0, 0).
The operators T̂µν(x), Ĵµ,αβ(x) and N̂µ(x) are the energy-momentum, angular
momentum and charge operators respectively.
In global thermodynamic equilibrium the operator ρ̂(t) should be independent of time.

∂µ

(
T̂µν(x)bν(x)− 1

2
Ĵµ,αβ(x)ωαβ(x)− ξ(x)N̂µ

)
= T̂µν(x) (∂µbν(x))− 1

2
Ĵµ,αβ(x) (∂µωαβ(x))− ∂µξ(x) = 0.

For asymmetric energy momentum tensor, bν = b0
ν , ωαβ = ω0

αβ , ξ = ξ0.
For symmetric energy momentum tensor, bν = b0

ν + δω0
νρxρ, ωαβ = ω0

αβ , ξ = ξ0.
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Summary

Global and local thermodynamic equilibrium (Zubarev, Becattini)

Ĵµ,αβ(x) = L̂µ,αβ(x) + Ŝµ,αβ(x).

Using above equation, we can write two cases discussed above can be expressed by a
single form of the density operator

ρ̂EQ = exp

[
−
∫

d3Σµ(x)

(
T̂µν(x)βν(x)− 1

2
Ŝµ,αβ(x)ω0

αβ − ξ0N̂µ

)]
.

For asymmetric energy-momentum tensor βµ(x) = b0
µ + ω0

µγxγ .
βµ(x) is a Killing vector, ωµγ = ω0

µγ .
For symmetric energy-momentum tensor βµ(x) = b0

µ + (δω0
µγ + ω0

µγ)xγ .
βµ(x) is again a Killing vector, ωµγ 6= ω0

µγ .
1. global equilibrium — βµ field is a Killing vector, $µν = ωµν = constt, in
addition ξ = constt.
2. extended global equilibrium — βµ field is a Killing vector, $µν = constt,
ωµν = constt but $µν 6= ωµν , in addition ξ = constt.
3. local equilibrium — βµ field is not a Killing vector but we still have
ωµν(x) = $µν(x), ξ = ξ(x),
4. extended local equilibrium — βµ field is not a Killing vector and
ωµν(x) 6= $µν(x), ξ = ξ(x).
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