

Existing and future experiments at Nuclotron Based Ion Collider fAcility (NICA)

 $P. \ Batyuk$

Dubna, Joint Institute for Nuclear Research

May 26, 2018

P. Batyuk

Outline:

- The NICA complex and its general characteristics
- Physics to be investigated within the complex: from feasibility studies for planned experiments to first experimental results
- Conclusion

NICA Complex

- Set of accelerators providing particle beams for fixed target and collider experiments
- Experimental facilities
- Line for assembling and cryogenic testing of SC-magnets
- Workshops for construction of the detector elements
- NICA innovation center

 $\begin{array}{c} {\rm Beams - } p, \ d \ ... \ ^{197}Au^{79+} \\ {\rm Collision \ energy:} \\ \sqrt{s_{NN}} = {\rm 4 - 11 \ GeV} \ E_{lab} = {\rm 1 - 6 \ AGeV} \\ {\rm Luminosity:} \ 10^{27} \ cm^{-2} s^{-1} \ ({\rm Au}), \\ 10^{32} \ ({\rm p}) \end{array}$

- 2 interaction points MPD and SPD
- Fixed target experiment BM@N
- 2018: extracted beams of heavy ions (Ar, Kr) are available within the BM@N experiment
- 2020: a first configuration of the MPD setup available.
- 2023: commissioning of the fully designed NICA-complex is foreseen.

Nuclotron (in operation since 1993)

Modernized in 2010 - 2015

Parameters	Nuclotron
type	SC synchrotron
particles	$\uparrow \mathbf{p}, \uparrow \mathbf{d}, $ nuclei
injection energy [MeV/u]	5 (†p, †d), 570-685 (Au)
max. kin. energy [GeV/u]	$12.07 (\uparrow p), 5.62 (\uparrow d), 4.38 (Au)$
magnetic rigidity [T · m]	25 - 43.25
circumference [m]	251.52
cycle for collider mode [s]	1.5-4.2 (active), 5.0 (total)
vacuum [Torr]	10^{-9}
intensity, Au [ions/pulse]	1 ·10 ⁹
spill of slow extraction [s]	up to 10

Run55: Feb - Apr, 2018

P. Batyuk

Booster

Commissioning started in 2018

Parameter	Booster		
type	SC synchrotron		
particles	ions $A/Z \leq 3$		
injection energy $[MeV/u]$	3.2		
$maximum \ energy \ [MeV/u]$	600		
magnetic rigidity $[T \cdot m]$	1.6 - 25.0		
circumference [m]	210.96		
vacuum [Torr]	10^{-11}		
intensity [Au ions/pulse]	$1.5 \cdot 10^{9}$		
RF range [MHz]	0.5 - 2.53		

Tunnel for Booster

Electron Cooling System

P. Batyuk

Collider

NICA site online http://nucloweb.jinr.ru/ nucloserv/205corp.htm

Technical params:

Ring circumference [m]	503.04	
Number of bunches	22	
$\Delta_{bunch\ length}$ [m]	0.6	
Max. energy $\sqrt{s_{NN}}$ [GeV]	11	
$\Delta p/p \ [10^{-3}]$	1.6	
Luminosity $[cm^{-2} \cdot s^{-1}]$	10^{27}	

P. Batyuk

Line for assembling and cryogenic testing of SC-magnets

Main production areas:

- Incoming inspection zone
- SC cable production hall
- SC coils production hall
- Area for assembling the magnets
- Area for the magnetic measurements under the room temperature
- Leakage test area
- Area for mounting the SC-magnets inside cryostats
- Cryogenic tests bench

450 magnets for NICA and FAIR projects

QCD phase diagram

P. Batyuk

Experiments in collider mode

P. Batyuk

MultiPurpose Detector (MPD) for A + A collisions @ NICA

MPD Layout:	Benefits:		
CPC Tracker Yoke United SC Coll FRCI ECT Fracker Crysstat	 Hermeticity, 2π-acceptance in azimuth 3D-tracking (TPC, ECT) Vertex high-resolution (IT) Powerful PID (TPC, TOF, ECAL) π, K up to 1.5 GeV/c K, p up to 3 GeV/c γ, e from 0.1 GeV/c up to 3 GeV/c Precise event characterization (FHCAL) Fast timing and triggering (FFD) Low material budget High event rate (up to 7 kHz) 		
Participants:	Realization progress:		
 Tsinghua University, Beijing, China GSI, Darmstadt, Germany WUT, Warsaw, Poland MEPhI, Moscow, Russia INR, RAS, Russia INR, RAS, Russia DPC BSU, Minsk, Belarus Dubna, JINR, Russia 	 TDR - completed / close to completion Preparation for / start of mass production First stage - 2019 - 2020 Second stage and full commissioning (IT + end-cups) - 2023 		

P. Batyuk

MPD physics cases

P. Batyuk

Multi-strangeness @ MPD

P. Batyuk

Hypernuclei @ MPD

Particle Identification

p/Z (GeV/c)

P. Batyuk

Dileptons @ MPD

P. Batyuk

Flow @ MPD

Flow performance @ MPD: v_n of charged hadrons

Femtoscopy @ MPD with vHLLE+UrQMD

Thermodynamic pressure as a

function of energy density

Parameters $\tau_0, R_{\perp}, R_{\eta}$ and η/s

adjusted using basic observables in

the RHIC BES region.

$\sqrt{s_{NN}}$ [GeV]	$\tau_0 [fm/c]$	R_{\perp} [fm]	R_{η} [fm]	η/s
7.7	3.2	1.4	0.5	0.2
8.8 (SPS)	2.83	1.4	0.5	0.2
11.5	2.1	1.4	0.5	0.2
17.3 (SPS)	1.42	1.4	0.5	0.15
19.6	1.22	1.4	0.5	0.15
27	1.0	1.2	0.5	0.12
39	0.9	1.0	0.7	0.08
62.4	0.7	1.0	0.7	0.08
200	0.4	1.0	1.0	0.08

Pion emission times at the last interaction 50 40 5 40 5 10 15 20 25 30 35 40 45 τ [fm/c] Phys. Rev. C 96, 024911 (2017)

- EoS with a crossover in the fluid phase results in a quite reasonable reproduction of 3D pion femtoscopic radii measured by the STAR collaboration (empty squares).
 - EoS with a first-order phase transition leads to fact that the "out" and "long" Gaussian femtoscopic radii are systematically larger if comparing with the crossover EoS; the "side" radii coincide for both types of EoS.

P. Batyuk

Three-fluid Hydrodynamics-based Event Simulator Extended by UrQMD final State interactions (THESEUS)

Rapidity distribution:

3FH-model (see Phys. Rev. C 94, 044917 (2016)):

Very high baryon densities are reached in the central region of the colliding system

UrQMD hadronic rescattering:

- leads to a slight steepening of the pion *p_T*-spectrum.
- smears the double-peak structure in the kaon rapidity spectrum.

P. Batyuk

Observables @ MPD with THESEUS

P. Batyuk

Experiments in fixed-target mode

P. Batyuk

BM@N experiment

Full setup, layout

- Central tracker (Silicon tracker + GEM) inside analyzing magnet to reconstruct AA-interactions
- Outer tracker (CPC, DCH) behind magnet to link tracks from central tracker to ToF detectors
- TOF1 & TOF2 system based on mRPC and T0 detectors to identify hadrons and light nuclei
- Detectors to form T0 and beam monitors
- ZDC calorimeter to measure centrality of AA-collisions
- Electromagnetic calorimeter for γ , e^+ , e^-

BM@N advantages:

- large aperture analyzing magnet
- sub-detector systems are resistant to high multiplicities of charged particles
 - PID: "near to magnet" (TOF1), "far from magnet" (TOF2)

Exploring high density baryonic matter with Nuclotron

Nuclotron is well suited to study high density (dominantly baryonic) matter since at that energies baryon-dominated system exists comparatively long lifetime

P. Batyuk

Physics possibilities at the Nuclotron

A + A collisions:

- strangeness at threshold
- Need more precise data for strange mesons, hyperons and hypernuclei, multi-variable distributions, unexplored energy range

p+p, p+n, p+A collisions:

• Hadron production in elementary reactions and "cold" nuclear matter as a "reference" to determine exactly nuclear effects

AGS NA49 BRAHMS

Heavy ions A + A: Hypernuclei production

BM@N energy range is suited for the search of (double) hypernuclei

- In heavy-ion collisions: production of hypernuclei through coalescence of Λ with light fragments enhanced at high baryon densities
- Maximal yield predicted for $\sqrt{s_{NN}} = 4 5$ AGeV (stat. model)

P. Batyuk

BM@N feasibility study

Simulation: UrQMD & DCM-QGSM, Au+Au, T = 4.5 AGeV

900k central events, 7.5M Ξ^- in 1 month 20 kHz trigger $\begin{array}{l} \textbf{2.6M central events,} \\ \textbf{8.5M }_{\Lambda}^{3}\textbf{H in 1 month} \\ \textbf{20 kHz trigger} \end{array}$

The feasibility study indicates reliable reconstruction of cascades and hypernuclei of order of 10 millions per month

P. Batyuk

Λ^0 in deutron (RUN5) and carbon (RUN6) beams

RUN5 and 6 are considered as technical ones!

To improve vertex and momentum resolution and reduce background:

- Need a few planes of forward Si vertex detector (vertex precision)
- Need more GEM planes (mom. resolution precision)

TOF1 and TOF2 performance in RUN6

 $\mathbf{T} = \mathbf{3.5} \; \mathbf{GeV/n}, \, \mathbf{C} + \mathbf{Al} \rightarrow \mathbf{X}$

Includes inf. from GEM tracking

$\mathbf{T} = 4.5 \; \mathrm{GeV/n}, \mathbf{C} + \mathbf{Cu} ightarrow \mathbf{X}$

Includes inf. from GEM and DCH trackings

P. Batyuk

Short Range Correlation (SRC) programme as an extension to the BM@N experiment

P. Batyuk

How to study SRC?

P. Batyuk

Experimental setup

P. Batyuk

And, finally, what about collected data we have?

P. Batyuk

BM@N and SRC, data collected, RUN7 (March 23 - April 5)

SRC:

- One beam energy available for C-beam
- More than half of the collected statistics can be used for analysis

BM@N:

- One beam energy available for Ar-beam and three - for Kr-beam
- Wide set of targets used (C, Al, Cu, Sn, Pb)

Data analysis is in progress ...

P. Batyuk

BM@N: past & future, status & plans

Beam parameters and setup at different stages of the experiment

Year	2016	2017	2018	2020	2021 and later
Experim. status	techn. run	techn.run	techn. run	stage 1, phys.	stage 2, phys.
Beam	$\mathbf{d}(\uparrow)$	С	Ar, Kr, C	Au	p, Au
Max. intensity [MHz]	0.5	0.5	0.5	1	10
Trigger rate [kHz]	5	5	10	10	20-50
Central tracker					
GEM	6 (half planes)	6 (half planes)	6 (half planes)	7	7
SI	-	1 (small plane)	3 (small planes)	4	4

Status:

- Technical runs with deuteron and carbon beams (T = 3.5 4.6 GeV/n), argon beam (T = 3.2 GeV/n) and krypton beam (T = 2.3 GeV/n) performed
- Measurement on Short Range Correlations with inverse kinematics: C + H₂-target performed
- Major sub-systems are operational, but are still in limited configurations: GEMs, forward Silicon detectors, Outer tracker, ToF, ZDC, ECAL, trigger, DAQ, slow control, online monitoring
- Algorithms for event reconstruction and analysis are being developed

Plans:

- Collaborate with CBM to produce and install large aperture silicon detectors in front of GEM-tracker
- Extend the GEM central tracker and the CSC outer tracker to full configuration
- Implement beam detectors into vacuum beam pipe, implement vacuum / helium beam pipe through the BM@N setup

Summarising ...

NICA energy region:

- Maximum in K^+/π^+ -ratio
- Maximum in Λ/π -ratio
- Maximum in the net-baryon density
- Transition from a Baryon dominated system to a Meson dominated one

- The construction of accelerator complex and both detectors BM@N & MPD are going close to the schedule
- NICA got a recognition as a part of European research infrastructure
- You are kindly invited to join the BM@N or/and MPD Collaborations

Thank you for your attention! You are welcome to participate in our experiments