NA61/SHINE: detector upgrades and physics plans beyond 2020

Pawel Staszel

Jagiellonian University

for the NA61/SHINE Collaboration

WPCF2018, 26 May 2018, Krakow

Outline

- 1. Introduction
- 2. Physics motivation for open charm measurements
- 3. Performance of Small Acceptance Vertex Detector
- 4. Upgrades and proposed measurements after LS2

Introduction

NA61/SHINE Experiment

Beam detectors and triggering \rightarrow a set of upstream scintillator and Cherenkov counters and beam Position detectors provides timing reference, charge and position measurements

Time Projection chambers → four large four small volume TPC's serve as tracking detectors, provide PID

Time of Flight walls \rightarrow used for hadron identification

Projectile Spectator Detector (PSD) \rightarrow a calorimeter which is positioned downstream of the time of flight detectors measure energy of projectile fragments.

Small Acceptance Vertex Detector \rightarrow precise tracking close to the target

Pawel Staszel

WPCF2018, 26 May 2018, Krakow

Research program

- Strong interaction: 2D scan of energy and system size to study phase diagram of strongly interacting matter
 - \rightarrow search for critical point of strongly interaction matter
 - $\rightarrow\,$ study of the properties of the onset of deconfinement
 - \rightarrow electromagnetic effects
 - \rightarrow particle flow measurements

(refer to talks by A. Rybicki, M. Kiełbowicz....)

- Hadron production measurements for neutrino experiments
 - → reference measurements for neutrino experiments for computing initial neutrino fluxes at J-PARC and FERMILAB
- Hadron production measurements for cosmic ray experiments
 - → reference measurements of p+C, p+p, π+C and K+C interactions for cosmic-ray physics (Pierre-Auger, KASCADE) for improving air shower simulations

Physics motivation (strong interactions)

Model predictions for $\langle c\overline{c} \rangle$ in central Pb+Pb at 150A GeV/c

- Different models differ in predictions of $\langle c\overline{c} \rangle$ by factor ≈ 50
- To discriminate models the $\langle c\bar{c} \rangle$ produced in full phase space is needed \rightarrow measurement of open charm mesons

Measurements of $\langle c\overline{c} \rangle$

Hadrons containing charm considered for measurements in NA61/SHINE

Hadron	Decay channel	$c\bar{\tau}$ [μ m]	BR	
D^0	$\pi^+ + \mathrm{K}^-$	123	3.89%	
D^+	$\pi^+ + \pi^+ + \mathrm{K}^-$	312	9.22%	
D^+_S	$\pi^+ + K^- + K^+$	150	5.50%	
Λ_{c}	$\mathbf{p} + \pi^+ + \mathbf{K}^-$	60	5.00%	

Measuring D^0 , \overline{D}^0 , D^+ , $D^$ provides good $\langle c\overline{c} \rangle$ estimate

PHSD, Elena Bratkovskaya & Taesoo Song, private communication

 $J/\psi\,$ normalized to DY measured by NA50 (Eur. Phys. J. C39, 335, 2005)

Data was interpreted in terms of final state interaction in the deconfined medium created in nucleus-nucleus collisions.

Medium reduces probability of J/ ψ production (Matsui, Satz, PLB 178 (1986) 416)

 $J/\psi\,$ normalized to DY measured by NA50 (Eur. Phys. J. C39, 335, 2005)

Data was interpreted in terms of final state interaction in the deconfined medium created in nucleus-nucleus collisions.

Medium reduces probability of J/ ψ production (Matsui, Satz, PLB 178 (1986) 416)

Below LHC energies in p+p 90% $c\overline{c}$ pairs convert to open charm, remaining 10% form charmonia states.

Below LHC energies in p+p 90% $c\overline{c}$ pairs convert to open charm, remaining 10% form charmonia states.

In A+A color screening reduces charmonia production \rightarrow reduction of fraction of $c\bar{c}$ pairs going into charmonia in respect to p+p at the same energy

Below LHC energies in p+p 90% cc pairs convert to open charm, remaining 10% form charmonia states.

In A+A color screening reduces charmonia production \rightarrow reduction of fraction of *cc* pairs going into charmonia in respect to p+p at the same energy

Due to shadowing, parton energy loss etc., the number of $c\overline{c}$ pairs produced in A+A may well be less than the scaled number from $p+p \rightarrow p$ initial state effects can reduce charmonium production rate in A+A ralative to p+p collisions.

2%

Below LHC energies in p+p 90% $c\overline{c}$ pairs convert to open charm, remaining 10% form charmonia states.

In A+A color screening reduces charmonia production \rightarrow reduction of fraction of $c\bar{c}$ pairs going into charmonia in respect to p+p at the same energy

Due to shadowing, parton energy loss etc., the number of $c\overline{c}$ pairs produced in A+A may well be less than the scaled number from p+p \rightarrow initial state effects can reduce charmonium production rate in A+A ralative to p+p collisions.

 \rightarrow the effect of the medium on $c\overline{c}$ binding can only be determined by comparing the ratio of $\langle J/\psi\rangle/\langle c\overline{c}\rangle$ in A+A to that in proton-proton collisions.

 $\rightarrow \text{ measurements of open charm in A+A needed!!!} P(c\overline{c} \rightarrow J/\psi) \equiv \frac{\langle J/\psi \rangle}{\langle c\overline{c} \rangle} \equiv \frac{\sigma_{J/\psi}}{\sigma_{c\overline{c}}}$

98 %

2%

open charm

charmonium

 I/Ψ

Performance of Small Acceptance Vertex Detector (SAVD)

Why Vertex Detector is needed to measure open charm?

 $D^0
ightarrow \pi^+ + K^-$

Vertex detector is needed to reconstruct **primary vertex** and **secondary vertexes** with high precision.

• Daughters of D^0 (π and K) are recognized as a pair forming a secondary vertex displaced form the primary vertex

• $c\tau(D^0) \approx 122 \ \mu\text{m}$, however, due to Lorentz boost ($\beta\gamma \approx 10$) the displacement is on the level of 1 mm.

- This holds also for other charm mesons like $D^{\scriptscriptstyle +},\,D^{\scriptscriptstyle -},\,D^{\scriptscriptstyle +}_{_S}$

• The Lorentz Boost makes the measurements significantly easier than in case of collider experiments

Vertex Detector tests with Pb+Pb at 150A GeV/c

SAVD:

• 16 MIMOSA-26 sensors located on 2 horizontally movable arms.

• Target holder integrated with SAVD base plate

Pawel Staszel

Achieved goals:

- tracking in the large track multiplicity environment
- precise Primary Vertex reconstruction
- TPC and SAVD track matching
- first search for D⁰ signal

Main project components

System integration and project leadership: Jagiellonian University Krakow, supported by AGH Krakow, WUT Warsaw

WPCF2018, 26 May 2018, Krakow

Main project components (cont.)

MIMOSA-26AHR

- 1152x576 pixels of 18.4x18.4μm²
- 3.5 μm resolution, 0.05% $X_{\rm 0}$
- Readout time: 115.2 $\mu s,$ 50 μm thin

PICSEL Group, IPHC Strasbourg

ALICE ITS ladder

- Ultra light carbon fibre
- < 0.3% X_0 including water cooling
- St. Petersburg, CERN

CBM Micro Vertex Detector Prototype

- Sensor integration
- Flex print cables, Front-end boards
- Read-out based on TRB3 FPGA Board Goethe Universitet Frankfurt am Main

Highlights of SAVD performance

First results for 140k events of Pb+Pb at 150A GeV/c

$\frac{10^{2}}{10^{2}}$

Background suppression \rightarrow cuts on:

1. track p_{τ}

- 2. track impact parameter
- 3. longitudinal distance of pair vertex to primary vertex
- 4. parent impact parameter

Analysis details:

1. Global fit (VD+TPCs) using Kalman Filter

2. PID not used yet (should reduce background by factor of 5)

Allocated beam time in 2018: 10M 0-20% central Pb+Pb $\rightarrow 2.5k D^{0} + \overline{D}^{0}$

• Large statistic Xe+La data taken in 2017 at 150A and 75A GeV/c.

• Segmented target was used (tree 1mm thick La blocks squeezed together). The structure of the target seen in the data.

• Primary vertex spacial resolution: 1.3, 1.0 and 15 μ m in *x*, *y* and *z* coordinate, respectively.

Upgrades and proposed measurements beyond LS2

LS2 upgrades of NA61/SHINE setup

Upgrades are needed to increase rate capability of NA61/SHINE by one order of magnitude to 1 kHz

Pawel Staszel

WPCF2018, 26 May 2018, Krakow

Upgrade of Vertex Detector

	MIMOSA-26AHR	ALPIDE
Sensor thickness (μ m)	50	50
Spatial resolution (μ m)	3.5	5
Dimensions (mm ²)	10.6 imes 21.2	13.8×30
Power density (mW/cm ²)	250	40
Time resolution (μs)	115.2	10
Detection efficiency (%)	>99	>99
Dark hit occupancy	$\lesssim 10^{-4}$	$\lesssim 10^{-6}$

- Mimosa 26AHR will be replaced by ALPIDE developed for ALICE-ITS
- 16 \rightarrow 46 sensors
- Increase surface 32 cm² (SAVD) \rightarrow 190 cm²

- Reuse mechanics and infrastructure
 of SAVD
- Minor modifications are required:
 - \rightarrow modifications of feedthrough
 - → modification of ladders fixation bars

Pawel Staszel

Upgrade of TPC

		NA61/	
		SHINE	ALICE
dynamic range		120:1	900:1
MIP S:N ratio		14:1	14/20/18:1
noise	e	1100	<1000
ADC number of bits		8	10
number of time slices		512	1000
power consumption	mW/ch	51	35
sampling rate	MHz	5, 10	5, 10
readout frequency	MHz	0.1	5, 10
integrated non-linearity	%	<2	0.2

• New readout used in ALICE TPC will allow for 1 kHz operation (MoU between ALICE and NA61/SHINE)

- Major challenges:
 - \rightarrow Development of dedicated FPC
 - $\rightarrow\,$ Flexible connection between FEC and ROU.

Upgrade of PSD

- Main PSD (MPSD) 44 modules with beam hole in center (ϕ =60mm)
- Forward PSD (FPSD) 9 modules w/o beam hole
- $\sigma_{_{\! D}}\!/b\simeq\,$ 0.1, reaction plane resolution $\simeq\,$ 40 deg
- Beam rates up to 50 kHz

WPCF2018, 26 May 2018, Krakow

Upgrade of DAQ

Inhomogeneous Nodes →
 flexible choice of sub-detector readout system.

• Homogeneous Core \rightarrow data from all subsystems treated in the same way.

- For 1 kHz expected data rate is 160 Gb/s
- Other features:
 - → Extendibility
 - → Transparency
 - \rightarrow Use of commercial components
 - → Robustness

Request for Open Charm measurements

Year	Beam	#days	#events	$\#(D^0 + \overline{D^0})$	$#(D^+ + D^-)$
2022	Pb at 150 <i>A</i> GeV/ <i>c</i>	42	250M	38k	23k
2023	Pb at 150 <i>A</i> GeV/ <i>c</i>	42	250M	38k	23k
2024	Pb at 40 <i>A</i> GeV/ <i>c</i>	42	250M	3.6k	2.1k

	0–10%	10–20%	20–30%	30–60%	60–90%	0–90%
$\#(\mathrm{D}^0+\overline{\mathrm{D}^0})$	31k	20k	11k	13k	1.3k	76k
$#(D^{+} + D^{-})$	19k	12k	7k	8k	0.8k	46k
$\langle W angle$	327	226	156	70	11	105

WPCF2018, 26 May 2018, Krakow

Anticipated results

• Precise measurements of charm hadron production by NA61/SHINE are expected to be performed in 2022-2024.

• The Lorentz boost makes the measurements significantly easier than in case of collider experiments.

• Unlike in a typical collider experiment the acceptance extends down to $p_T=0$ \rightarrow accurate measurements of total charm meson yields.

The proposed program will allow to perform systematic study of D^0 , \overline{D}^0 , D^+ , D^- , (D^+_{s}) production versus collision energy and centrality

Measurement of Nuclear Fragmentation Cross Sections (NFCS)

Motivation: NFCS of intermediate mass nuclei are needed to understand the propagation of cosmic rays in our Galaxy

→ background for dark matter searches with space-based experiments as AMS and PAMELA.

Beam requests in 2022

Heavy Ion Physics

 \rightarrow 42 days of primary Pb beam at 150A GeV/c for data taking on charm hadrons production in Pb+Pb collisions.

Cosmic Ray Physics

 \rightarrow 24 days of secondary light ion beam at 13A GeV/c for data taking on nuclear fragmentation cross section

Neutrino Physics

- \rightarrow 35 days of proton beam at 31 GeV/c for data taking on hadron production from the T2K replica target and the Super-Sialon thin target.
- → 28 days of K⁺ beam at 60 GeV/*c* for data taking on hadron production by induced K⁺ mesons.

In addition in 2021 beams for commissioning and calibrations.

Summary

NA61/SHINE open charm production measurements started in 2017 with SAVD \rightarrow expected first physics results soon

- After LS2 high statistic Pb+Pb data taking with upgraded detector is proposed The results from high statistic runs are expected to:
 - → distinguish between many existing models of charm production in Pb+Pb collisions
 - \rightarrow initiate a measurement of collision energy dependence of open charm yield
 - → verify signal of the QGP formation by measurements of centrality dependence of charm production
- We will continue with strong interaction program which is not related to charm
- NA61/SHINE plan to continue measurements for neutrino physics
- Request of dedicated secondary beams for measurements of NFCS

Details in CERN document: SPSC-P-330-ADD-10

Backup slides

NA61/SHINE program: complementarity and uniqueness

- LHC and RHIC at high energies ($\sqrt{s}_{NN} \ge$ 200 GeV): significantly limited acceptance due to collider kinematics and related detector geometry
- **RHIC BES** collider and fixed-target $(\sqrt{s}_{NN} = 3-39 \text{ GeV})$: measurement not considered in the current program
- NICA (\sqrt{s}_{NN} < 11 GeV): measurements during stage 2 (after 2023) are under consideration (overlap in energy with NA61/SHINE)
- **J-PARC-HI** ($\sqrt{s}_{NN} \le 6$ GeV): under consideration, may be possible after 2025.
- FAIR SIS-100 ($\sqrt{s}_{NN} < 5$ GeV): subthreshold charm production measurements are considered. Systematic charm measurements are planed with SIS-300

 \rightarrow only NA61/SHINE is able to measure open charm in heavy ion collisions in full phase space in the near future

Vertex Detector performance

Spacial resolution of the sensor < 5µm as expected

$$\sigma_{x/y} = \sqrt{\frac{2}{3}} \, \sigma_{dev_{x/y}}$$

Reconstruction of primary vertex allows to separate in- and outtarget interactions

Spacial primary vertex resolution: $\sigma_x = 5 \ \mu m$ $\sigma_y = 1.8 \ \mu m$ $\sigma_z = 30 \ \mu m$

Worse resolution in x due to presence of magnetic field (B_v)

VD – TPC track matching

Extrapolate SAVD tracks to TPC volume.

Pre-selection: cut on y-slopes of tracks.

After cuts on dx and dy clear correlation peaks are seen in dp_x and dp_z

Matching with TPC provides: momenta and PID to VD tracks

 \rightarrow invariant mass distribution

Performance for Xe+La at 150A GeV/c

• Large statistic Xe+La data taken in late 2017 at 150A and 75A GeV/c for minimum bias and 0-20% central events.

• Segmented target was used (tree 1mm thick La blocks squeezed together). The structure of the target can be well seen in the z_{prim} distribution plot.

• Obtained primary vertex resolution: 1.3, 1.0 and 15 μ m in *x*, *y* and *z* coordinate, respectively. Significant improvement as compare to test measurement due to better setup of sensor thresholds.

• Xe+La data should allow for reinterpretation of J/ψ yields measured by NA60 for medium size systems.

Measurement program with SAVD

2016: Pb+Pb at 150A GeV/c

- Detector commissioning
- Good detector performance
- D^o likely seen

2017: Xe+La at 75 and 150A GeV/c

- Improved sensor efficiency
- Improved primary vertex resolution (dx= $1.3\mu m$, dy= $1.0\mu m$, dz= $15\mu m$)
- Large statistics collected:

5.1 MEvents@150AGeV/c

4.0 MEvents @75A GeV/c

- Analysis ongoing, expected good data quality
- Expected open charm data suited for comparison with NA61/SHINE

2018: Pb+Pb at 150A GeV/c run scheduled

Simulated results on D⁺ + D⁻

Pawel Staszel

WPCF2018, 26 May 2018, Krakow

Anticipated results

SMES predictions

Particle ratios and fluctuations (2)

Rapid changes in $K^+I\pi^+$ (HORN) were observed in Pb+Pb collisions. It was predicted within SMES as a signature of onset of deconfinement

NEW RESULTS:

- plateau like structure visible in p+p
- Be+Be consistent with p+p

• $<K^+>/<\pi^+>$ in Ar+Sc in between p+p, Be+Be and Pb+Pb

Tentative conclusions from 2D scan

Completion of Ar+Sc analysis and new data for Xe+La awaited to verify this picture

NA61/SHINE

We would like to thank the CERN EP, BE, EN and IT Departments for the strong support of NA61/SHINE

The NA61/SHINE Collaboration

A. Aduszkiewicz¹⁶, Y. Ali¹³, E.V. Andronov²², T. Antićić³, B. Baatar²⁰, M. Baszczyk¹⁴, S. Bhosale¹¹, A. Blondel²⁵, M. Bogomilov², A. Brandin²¹, A. Bravar²⁵, W. Bryliński¹⁸, J. Brzychczyk¹³ S.A. Bunyatov²⁰, O. Busygina¹⁹, A. Bzdak¹⁴, H. Cherif⁷, M. Ćirković²³, T. Czopowicz¹⁸, A. Damyanova²⁵, N. Davis¹¹, M. Deveaux⁷, P. von Doetinchem³⁰, W. Dominik¹⁶, P. Dorosz¹⁴, J. Dumarchez⁴, A. Datta³⁰, R. Engel⁵, A. Ereditato²⁴, G.A. Feofilov²², Z. Fodor^{8,17}, C. Francois²⁴, A. Garibov¹, M. Gaździcki^{7,10}, M. Golubeva¹⁹, K. Grebieszkow¹⁸, F. Guber¹⁹, A. Haesler²⁵, A.E. Hervé⁵, J. Hylen²⁶, S.N. Igolkin²², A. Ivashkin¹⁹, S.R. Johnson²⁸, K. Kadija³, E. Kaptur¹⁵, M. Kiełbowicz¹¹, V.A. Kireyeu²⁰, V. Klochkov⁷, V.I. Kolesnikov²⁰, D. Kolev², A. Korzenev²⁵. V.N. Kovalenko²², K. Kowalik¹², S. Kowalski¹⁵, M. Koziel⁷, A. Krasnoperov²⁰, W. Kucewicz¹⁴, M. Kuich¹⁶, A. Kurepin¹⁹, D. Larsen¹³, A. László⁸, T.V. Lazareva²², M. Lewicki¹⁷, B. Lundberg²⁶, B. Łysakowski¹⁵, V.V. Lyubushkin²⁰, M. Maćkowiak-Pawłowska¹⁸, B. Maksiak¹⁸, A.I. Malakhov²⁰, D. Manić²³, A. Marchionni²⁶, A. Marcinek¹¹, A.D. Marino²⁸, K. Marton⁸, H.-J. Mathes⁵, T. Matulewicz¹⁶, V. Matveev²⁰, G.L. Melkumov²⁰, A.O. Merzlaya²², B. Messerly²⁹, Ł. Mik¹⁴, G.B. Mills²⁷, S. Morozov^{19,21}, S. Mrówczyński¹⁰, Y. Nagai²⁸, M. Naskręt¹⁷, V. Ozvenchuk¹¹ V. Paolone²⁹, M. Pavin^{4,3}, O. Petukhov^{19,21}, C. Pistillo²⁴, R. Płaneta¹³, P. Podlaski¹⁶, B.A. Popov^{20,4}, M. Posiadała¹⁶, R.R. Prado⁵, S. Puławski¹⁵, J. Puzović²³, R. Rameika²⁶, W. Rauch⁶, M. Ravonel²⁵. R. Renfordt⁷, E. Richter-Wąs¹³, D. Röhrich⁹, E. Rondio¹², M. Roth⁵, B.T. Rumberger²⁸, A. Rustamov^{1,7}, M. Rybczynski¹⁰, A. Rybicki¹¹, A. Sadovsky¹⁹, K. Schmidt¹⁵, I. Selyuzhenkov²¹, A.Yu. Seryakov²², P. Seyboth¹⁰, M. Słodkowski¹⁸, A. Snoch⁷, P. Staszel¹³, G. Stefanek¹⁰, J. Stepaniak¹², M. Strikhanov²¹, H. Ströbele⁷, A. Shukla³⁰, T. Šuša³, A. Taranenko²¹, A. Tefelska¹⁸, D. Tefelski¹⁸, V. Tereshchenko²⁰, A. Toia⁷, R. Tsenov², L. Turko¹⁷, R. Ulrich⁵, M. Unger⁵, F.F. Valiev²², D. Veberič⁵, V.V. Vechernin²², M. Walewski¹⁶, A. Wickremasinghe²⁹, C. Wilkinson²⁴, Z. Włodarczyk¹⁰, A. Wojtaszek-Szwarc¹⁰, O. Wyszyński¹³, L. Zambelli⁴, E.D. Zimmerman²⁸, and R. Zwaska²⁶