

Measurement of long range azimuthal correlations in proton-proton and protonlead collisions with ATLAS

Arabinda Behera

Stony Brook University

For the ATLAS Collaboration

23rd May, 2018

Large vs Small system

- N+N QGP formation and collective expansion
- Will the picture be same in small system???

Phys.Rev. C 86 (2012) 014907

-4

- Relatively very small created medium in p+Pb and pp
- Expectation No QGP and collective expansion in small system!!!

Ridge in Small System

- Long-range azimuthal correlation observed in both pp and p+Pb
- Both system show near-side and away-side ridge

Ridge in Small System

- Long-range azimuthal correlation observed in both pp and p+Pb
- Both system show near-side and away-side ridge

Is QGP droplet present in small system? How to turn off QGP? What's the underlying physics?

Non-flow in Ridge

- Non-Flow can contribute to both SRC(decays,single jets,HBT,etc) and LRC(dijets)
- Detailed investigation of the correlation and non-flow is very important

Non-flow in Ridge

- Non-Flow can contribute to both SRC(decays,single jets,HBT,etc) and LRC(dijets)
- Detailed investigation of the correlation and non-flow is very important

How to remove non-flow? Is there collectivity in small system?

• Flow fluctuates from event to event -

- Initial geometry
 Hadronic interactions
- Hydro-evolution

Flow fluctuates from event to event -

- Initial geometry
- Hydro-evolution

• Cumulants

- Global nature of correlation
- Suppress non-flow
- Measure $p(v_n)$

 $L_{int} = 7 \mu b^{-1}$

- $v_n\{4\} = \sqrt{-c_n\{4\}}$ • Reference flow :
- For Gaussian flow fluctuations :

$$v_n\{2\} = \sqrt{\bar{v}_n + \sigma^2} \qquad v_n\{4\} = \sqrt{\bar{v}_n - \sigma^2} = v_n\{6\} = v_n\{8\}, \dots$$

• Flow fluctuates from event to event -

- Initial geometry
- Hydro-evolution

• Cumulants

- Global nature of correlation
- Suppress non-flow
- Measure $p(v_n)_{c}$

• Reference flow :

• For Gaussian flow fluctuations :

$$v_n\{2\} = \sqrt{\bar{v}_n + \sigma^2} \qquad v_n\{4\} = \sqrt{\bar{v}_n - \sigma^2} = v_n\{6\} = v_n\{8\}, \dots$$

Flow fluctuates from event to event -

- Initial geometry
- Hydro-evolution

• Cumulants

- Global nature of correlation
- Suppress non-flow
- Measure $p(v_n)$

Negative

- Reference flow : $v_n\{4\} = \sqrt{-c_n\{4\}}$
- For Gaussian flow fluctuations :

$$v_n\{2\} = \sqrt{\bar{v}_n + \sigma^2} \qquad v_n\{4\} = \sqrt{\bar{v}_n - \sigma^2} = v_n\{6\} = v_n\{8\}, \dots$$

• Signature of Collectivity :

 $c_n\{4\} < 0 \quad \& \quad v_n\{2\} > v_n\{4\} \approx v_n\{6\} \approx v_n\{8\}$

Cumulant Observables

- 4-particle cumulant : $\langle \{4\}_n \rangle = \langle e^{in(\phi_1 + \phi_2 \phi_3 \phi_4)} \rangle \quad c_n\{4\} = \langle \langle \{4\}_n \rangle \rangle 2\langle \langle \{2\}_n \rangle \rangle^2$
- Mixed harmonics Correlation : correlation among different flow harmonics

Symmetric Cumulant

Asymmetric Cumulant

$$\langle \{4\}_{n,m} \rangle = \langle e^{in(\phi_1 - \phi_2) + im(\phi_3 - \phi_4)} \rangle \qquad \langle \{3\}_n \rangle = \langle e^{i(n\phi_1 + n\phi_2 - 2n\phi_3)} \rangle$$
$$sc_{n,m}\{4\} = \langle \langle \{4\}_{n,m} \rangle \rangle - \langle \langle \{2\}_n \rangle \rangle \langle \langle \{2\}_m \rangle \rangle \qquad ac_n\{3\} = \langle \langle \{3\}_n \rangle \rangle$$

$$sc_{n,m}\{4\} = \langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle$$

$$ac_n\{3\} = \langle v_n^2 v_{2n} \cos 2n(\Phi_n - \Phi_{2n}) \rangle$$

Cumulant Observables

- 4-particle cumulant : $\langle \{4\}_n \rangle = \langle e^{in(\phi_1 + \phi_2 \phi_3 \phi_4)} \rangle \quad c_n\{4\} = \langle \langle \{4\}_n \rangle \rangle 2\langle \langle \{2\}_n \rangle \rangle^2$
- Mixed harmonics Correlation : correlation among different flow harmonics

Symmetric Cumulant

Asymmetric Cumulant

$$\langle \{4\}_{n,m} \rangle = \langle e^{in(\phi_1 - \phi_2) + im(\phi_3 - \phi_4)} \rangle$$

$$sc_{n,m}\{4\} = \langle \langle \{4\}_{n,m} \rangle \rangle - \langle \langle \{2\}_n \rangle \rangle \langle \langle \{2\}_m \rangle \rangle$$

$$ac_n\{3\} = \langle \langle \{3\}_n \rangle \rangle$$

$$sc_{n,m}\{4\} = \langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle$$

$$ac_n\{3\} = \langle v_n^2 v_{2n} \cos 2n(\Phi_n - \Phi_{2n}) \rangle$$

• Results :

- \bullet p+Pb low Nch $c_2\{4\}$ has wrong sign
- pp $c_2\{4\}$ dominated by non-flow
- No Collectivity in pp?

Subevent Method for Cumulants

• Subevents in pseudorapidity used to remove non-flow correlations

30-

• 2-subevent removes intra-jet and 3-subevent removes inter-jet correlations

Subevent Method for Cumulants

• Subevents in pseudorapidity used to remove non-flow correlations

• 2-subevent removes intra-jet and 3-subevent removes inter-jet correlations

8

 Performance in Pythia - standard method fails to suppress non-flow

PHYSICAL REVIEW C 96, 034906 (2017)

- Standard cumulant has positive $c_2{4}$
 - residual non-flow

- Standard cumulant has positive $c_2{4}$
 - residual non-flow

3 Subevent has the highest non-flow suppression and measures 4% flow down to 70 tracks

- Standard cumulant has positive $c_2{4}$
 - residual non-flow

3 Subevent has the highest non-flow suppression and measures 4% flow down to 70 tracks

System comparison - 3-Subevent

- Non-flow suppression in both pp and p+Pb
- Correct sign both pp and p+Pb
- Weak energy dependence for pp

- Standard cumulant has positive $c_2{4}$
 - residual non-flow

3 Subevent has the highest non-flow suppression and measures 4% flow down to 70 tracks

System comparison - 3-Subevent

- Non-flow suppression in both pp and p+Pb
- Correct sign both pp and p+Pb
- Weak energy dependence for pp

pp also shows signs of collectivity

ch'

Symmetric Cumulant (2,3)

Symmetric Cumulant (2,3)

Symmetric Cumulant (2,3)

Symmetric Cumulant (2,4)

 $\mathbf{sc_{2,4}}{4} = \langle \mathbf{v_2^2 v_4^2}
angle - \langle \mathbf{v_2^2}
angle \langle \mathbf{v_4^2}
angle$ pp ×10⁻⁶ sc_{2,4}{4} Standard method non-flow dominated — Two-subevent method Three-subevent method — Four-subevent method Residual non-flow in 2SE 5 Positive correlation between v_2 and v_4 is observed in all methods 8 Ř \bigcirc 0 **ATLAS** Preliminary Manifestation of non-linear 0.3<p_<3 GeV pp 13 TeV, 0.9 pb⁻¹ effects $v_4 = v_{4L} + \chi_2 v_2^2$ 50 150 100 0 $\langle {\sf N}_{\rm ch} \rangle$ ATLAS-CONF-2018-012

Symmetric Cumulant (2,4)

Asymmetric Cumulant

- Positive correlation is observed in all systems and all methods
- Residual non-flow in 2SE

Asymmetric Cumulant

- Positive correlation is observed in all systems and all methods
- Residual non-flow in 2SE
- Standard and subevents dont converge even at high N_{ch} Flow decorrelation? Eur. Phys. J. C 76 (2018) 142
- Higher signal thus better statistical precision than symmetric cumulants

System Size Dependence

- Consistent results for symmetric cumulants N_{ch} range covered by pp
- For N_{ch} > 150, sc_{23} {4} and sc_{24} {4} signals are larger for Pb+Pb than p+Pb

System Size Dependence

- \bullet Consistent results for symmetric cumulants N_{ch} range covered by pp
- For N_{ch} > 150, sc_{23} {4} and sc_{24} {4} signals are larger for Pb+Pb than p+Pb
- For N_{ch} > 100, $ac_2\{3\}$ in the three systems deviate from each other
- \bullet Comparison not perfect as different cumulants have different \mathbf{V}_n

 Normalised cumulants - remove dependence on harmonics magnitude and focus only on correlation strength

$$nsc_{2,3}\{4\} = \frac{sc_{2,3}\{4\}}{v_2\{2\}^2 v_3\{2\}^2} = \frac{\langle v_2^2 v_3^2 \rangle}{\langle v_2^2 \rangle \langle v_3^2 \rangle} - 1 \quad , \quad nsc_{2,4}\{4\} = \frac{sc_{2,4}\{4\}}{v_2\{2\}^2 v_4\{2\}^2} = \frac{\langle v_2^2 v_4^2 \rangle}{\langle v_2^2 \rangle \langle v_4^2 \rangle} - 1$$
$$nac_2\{3\} = \frac{ac_2\{3\}}{v_2\{2\}^2 \sqrt{v_4\{2\}^2}} = \frac{\langle v_2^2 v_4 cos4(\Phi_2 - \Phi_4) \rangle}{\langle v_2^2 \rangle \sqrt{\langle v_4^2 \rangle}}$$

• "Improved" template fit method - To obtain $v_n \{2\}^2$

ATLAS-CONF-2018-012

 $nsc_{2,3}{4}$

$nsc_{2,4}{4}$

$nac_{2}{3}$

- Normalization removes most of the N_{ch} dependence at N_{ch} >100!
- Signal strength similar in all systems at high N_{ch} but 20-30% difference at low N_{ch}

- Normalization removes most of the N_{ch} dependence at N_{ch} >100!
- ullet Signal strength similar in all systems at high N_{ch} but 20-30% difference at low N_{ch}
- •In pp $nsc_{23}{4}$ is very different than in p+Pb and Pb+Pb $v_3^2{2}$ in template fit method underestimated significantly

- Normalization removes most of the N_{ch} dependence at N_{ch} >100!
- Signal strength similar in all systems at high N_{ch} but 20-30% difference at low N_{ch}
- •In pp $nsc_{23}{4}$ is very different than in p+Pb and Pb+Pb $v_3^2{2}$ in template fit method underestimated significantly

Summary

- Two-particle Flow :
 - Improved Template Fit corrects for fluctuating v_n with N_{ch}
 - Significant $v_2\{2\}$ for small system
- Multi-particle Cumulants :
 - Standard cumulant method dominated by non-flow
 - Three-subevent method removes non-flow
 - Small system shows signs of collectivity
- Mixed Harmonics Correlation :
 - Three-subevent method removes non-flow
 - Anticorrelation (v_2, v_3) and correlated (v_2, v_4)
 - Normalised cumulants similar strength across all systems
 - Behaviour of small and large systems are similar

Summary

- Two-particle Flow :
 - Improved Template Fit corrects for fluctuating v_n with N_{ch}
 - Significant $v_2\{2\}$ for small system
- Multi-particle Cumulants :
 - Standard cumulant method dominated by non-flow
 - Three-subevent method removes non-flow
 - Small system shows signs of collectivity
- Mixed Harmonics Correlation :
 - Three-subevent method removes non-flow
 - Anticorrelation (v_2, v_3) and correlated (v_2, v_4)
 - Normalised cumulants similar strength across all systems
 - Behaviour of small and large systems are similar

Strong evidence for long-range correlation and collectivity in small system. Can help constrain theoretical models.

p+Pb Collectivity

Eur. Phys. J. C 77 (2017) 428

System dependence

Normalised Cumulants

