

Dynamics and Symmetry Energy at Intermediate Energies

Pawel Danielewicz

Natl Superconducting Cyclotron Lab, USA

XIII Workshop on Particle Correlations and Femtoscopy

The Henryk Niewodniczanski Institute of Nuclear Physics PAN, Krakow, Poland

Outline

- 2 Subnormal Densities
 - Isospin Diffusion
 - Yield Ratios

3 n-Star Merger

- Comparison Project
 Code Comparison Effort
 TUCMD Example
 - TuQMD Example

▶ < ∃ >

Subnormal Densities

Bulk Properties of Strongly-Interacting Matter

Introduction

n-Star Merger

Equation of State

Known: $a_a \approx 16 \text{ MeV}$ $K \sim 235 \text{ MeV}$ Unknown: $a_a^V ?_{\text{P}} \downarrow L^2_{\text{P}} \downarrow a_{\text{R}} \downarrow$

Introduction Subnormal Densities 00000

n-Star Merger

Importance of Slope

$$egin{split} rac{E}{A} &= rac{E_0}{A}(
ho) + S(
ho) \left(rac{
ho_n -
ho_p}{
ho}
ight)^2 \ S &\simeq a_a^V + rac{L}{3}rac{
ho -
ho_0}{
ho_0} \end{split}$$

In neutron matter: $\rho_{D} \approx 0 \& \rho_{n} \approx \rho.$ Then, $\frac{E}{A}(\rho) \approx \frac{E_0}{A}(\rho) + S(\rho)$ Pressure: $P =
ho^2 rac{\mathrm{d}}{\mathrm{d}
ho} rac{E}{A} \simeq
ho^2 rac{\mathrm{d}S}{\mathrm{d}
ho} \simeq rac{L}{3
ho_0}
ho^2$

Both Radius & Max Mass Increase w/Stiffness

Irreversible flux of n-p asymmetry, according to Fick's law:

$$\vec{j}_{np} = \vec{j}_n - \vec{j}_p = -
u \, ec{
abla} \left[\mu_n - \mu_p
ight] \simeq -4
u \, ec{
abla} \left[S \, rac{
ho_n -
ho_p}{
ho}
ight]$$

where $\nu > 0$, independent of the symmetry energy *S*. Analog of the electric conductivity eq: $\vec{j} = \sigma \vec{E} = -\sigma \vec{\nabla} \Phi$. Shi&PD

Impact-Parameter Filtered Isospin-Equilibration

Tsang, Zhang et al

Equilibration ratio R from measured yields of A = 7 mirror nuclei, compared to ImQMD

Subnormal Densities n-Star № 00000 00

n-Star Merger

Comparison Project

³H/³He Yield Ratio

Clusters form at moderate ρ . Stiffness of $S(\rho)$ decides how *n-p* imbalance gets partitioned across densities & what yield ratios of clusters with different isospin become

UrQMD + phase-space coalescence results by Yongjia Wang, Qingfeng Li et al for different Skyrme ints, plotted vs symmetry-energy values at different ρ , vs FOPI results from 30 Au+Au collisions

Conclusions

Low- ρ Summary of Symmetry Energy from work of Tsang & Lynch

Symmetry Energy

Danielewicz

Subnormal Densities

ties n-St

n-Star Merger

 π^+/π

Comparison Projec

Conclusions

Neutron Star Merger Event

LIGO signal amenable to perturbative analysis t-resolution insufficient for late stage.

First-order point masses, radiated power $P \propto Q^2$, where Q - quadrupole moment. Next order distortion of extended masses matters, $Q_{ij} = \Lambda \partial^2 V / \partial r_i \partial r_j$, where Λ - tidal deformability

Danielewicz

3 → < 3

Implications for Stars & EOS

Subnormal Densities

Comparison Project

Pions as Probe of High- ρ Symmetry Energy B-A Li PRL88(02)192701: $S(\rho > \rho_0) \Rightarrow n/\rho_{\rho > \rho_0} \Rightarrow \pi^-/\pi^+$

n-Star Merger

Dedicated Experimental Efforts

SAMURAI-TPC Collaboration (data taken; 8 countries and 43 researchers): comparisons of near-threshold π^- and π^+ and

also *n-p* spectra and flows at RIKEN, Japan. NSCL/MSU, Texas A&M U Western Michigan U, U of Notre Dame GSI, Daresbury Lab, INFN/LNS U of Budapest, SUBATECH, GANIL China IAE, Brazil, RIKEN, Rikkyo U Tohoku U, Kyoto U

LAMPS TPC at RAON (S Korea): triple GEM, 3π sr

tion Subnormal Densities

Pensities n-Star Merger

Comparison Project

イロト イ理ト イヨト イヨト

Conclusions

FOPI Au+Au π^-/π^+ Data?

Reisdorf et al. (FOPI) NPA781(07)459

Circumstantial Evidence for a Soft Nuclear Symmetry Energy at Suprasaturation Densities

FOPI π^-/π^+ Reproduced by pBUU

... irrespectively of $S_{int}(\rho) = S_0 (\rho/\rho_0)^{\gamma}$:

Jun Hong & PD PRC90(14)024605

... Other probes possible, but general problem of model ambiguity remains!

イロト イポト イヨト イヨト

Code Comparison Project

BUU type	Code correspondents	Energy range	QMD type	Code correspondents	Energy range
BLOB	P. Napolitani, M. Colonna	0.01 0.5	AMD	A. Ono	0.01 0.3
GIBUU-RMF	J. Weil	0.05 40	IQMD-BNU	J. Su, F. S. Zhang	0.05 2
GIBUU-Skyrme	J. Weil	0.05 40	IQMD	C. Hartnack, J. Aichelin	0.05 2
IBL	W. J. Xie, F. S. Zhang	0.05 2	CoMD	M. Papa	0.01 0.3
IBUU	J. Xu, L. W. Chen, B. A. Li	0.05 2	ImQMD-CIAE	Y. X. Zhang, Z. X. Li	0.02 0.4
pBUU	P. Danielewicz	0.01 12	IQMD-IMP	Z. Q. Feng	0.01 10
RBUU	K. Kim, Y. Kim, T. Gaitanos	0.05 2	IQMD-SINAP	G. Q. Zhang	0.05 2
RVUU	T. Song, G. Q. Li, C. M. Ko	0.05 2	TuQMD	D. Cozma	0.1 2
SMF	M. Colonna, P. Napolitani	0.01 0.5	UrQMD	Y. J. Wang, Q. F. Li	0.05 200

Leaders in the effort: Jorg Aichelin, Evgeni Kolomeitsev, <u>Betty Tsang + others</u> Jun Xu *et al.* PRC93(16)044609, Yingxun Zhang *et al.* PRC97(18)034625

Premise

- Specify the same physics inputs for different transport codes
- Compare outputs
- · elastic collisions only
- constant isotropic cross section $\sigma = 40 \text{ mb}$
- soft EOS + momentum-independent mean-field
- Full-run comparisons
- Controlled simplified conditions
 - * collisions in a box \leftarrow approach to equilibrium
 - * mean field in a box
 - * Next: $\Delta + \pi$ production in a box...

イロト イポト イヨト イヨト

troduction Sub

Full Runs: Stability of Initial Density

Example: Rebuilt TuQMD

Dan Cozma arXiv: 1706.01300

Rebuilt density initializations and Pauli principle

IntroductionSubnormal Densitiesn-Star Merger π^+/π^- Comparison ProjectConclusion000000000000000000000000000

FOPI-LAND & ASYEOS Elliptic-Flow Data

Data Cozma PRC88(13)044912

400 MeV/mucl Au + Au data above + other, particularly more differential

Constraints on Symmetry Energy Parameters

Symmetry Energy

Conclusions

- Convergence on symmetry-energy conclusions at ρ ≤ ρ₀. Slope parameter L at ρ₀ still elusive.
- Neutron-star merger constrains stiffness of EOS from above.
- Code comparison project aims at improving firmness of conclusions drawn from comparing data to transport. First benefits begin to emerge.

