

WARSAW UNIVERSITY OF TECHNOLOGY

Femtoscopy results from ALICE

Małgorzata Janik for the ALICE Collaboration

> WPCF 2018 Kraków, Poland 22-26/05/2018

Status of femtoscopy in ALICE

<u>Previous results</u>

- Multipion Bose-Einstein correlations in pp, p-Pb, and Pb-Pb collisions at the LHC, Phys. Rev. C 93 (2016) 054908
- Centrality dependence of pion freeze-out radii in Pb-Pb collisions at √s_{NN}=2.76 TeV Phys. Rev. C 93 (2016) 024905
- 1D pion, kaon, proton femtoscopy in Pb-Pb Phys. Rev. C 92 (2015) 054908
- Pion femtoscopy in p-Pb Phys. Rev. C 91 (2015) 034906
- Freeze-out radii extracted from three-pion cumulants in pp, p-Pb and Pb-Pb collisions at the LHC, Phys. Lett. B 739 (2014) 139-151
- Two and Three-Pion Quantum Statistics Correlations in Pb-Pb Collisions at √s_{NN}=2.76 TeV at the LHC Phys. Rev. C 89 (2014) 024911
- Charged kaon femtoscopic correlations in pp collisions at √s=7 TeV, Phys. Rev. D 87 (2013) 052016
- KOsKOs correlations in pp collisions at √s=7 TeV from the LHC ALICE experiment Phys. Lett. B 717 (2012) 151-161
- Femtoscopy in pp a 0.9 and 7 TeV: Phys. Rev. D 84 (2011) 112004,
- Two-pion Bose-Einstein correlations in central Pb-Pb collisions at √s_{NN} = 2.76 TeV Phys. Lett. B 696 (2011) 328-337
- Two-pion Bose-Einstein correlations in pp collisions at √s=900 GeV, Phys. Rev. D 82 (2010) 052001
- <u>Newly published papers:</u>
 - Azimuthally-differential pion femtoscopy relative to the third harmonic event plane in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV, arxiv: 1803.10594
 - Azimuthally differential pion femtoscopy in Pb-Pb collisions at √s_{NN}=2.76 TeV, Phys. Rev. Lett. 118 (2017) 222301
 - Kaon femtoscopy in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV, Phys. Rev. C96 (2017) 064613
 - Measuring KOSK± interactions using Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}}$ =2.76 TeV, Phys. Lett. B 774 (2017) 64
- Preliminary results:
 - Baryon results:
 - pp, pp, pp from Run2
 - Baryon-baryon correlations (pA, $\overline{p}\overline{\Lambda}$, $\Lambda\Lambda$, and $\overline{\Lambda\Lambda}$) from Run1 and Run2
 - Baryon-antibaryon correlations (pp, and $p\overline{\Lambda}$, $\overline{p}\Lambda$, and $\Lambda\overline{\Lambda}$) from Run1 and Run2
 - Analysis of heavier baryons (eg. p Ξ , $\overline{p}\Xi$)
 - Lambda-K+, Lambda-K-, and Lambda-K0s
 - Kaon-proton
 22-26 May 2018, WPCF 2018

Status of femtoscopy in ALICE

• Previous results

- Multipion Bose-Einstein correlations in pp, p-Pb, and Pb-Pb collisions at the LHC, Phys. Rev. C 93 (2016) 054908
- Centrality dependence of pion freeze-out radii in Pb-Pb collisions at √s_{NN}=2.76 TeV Phys. Rev. C 93 (2016) 024905
- 1D pion, kaon , proton femtoscopy in Pb-Pb Phys. Rev. C 92 (2015) 054908
- Pion femtoscopy in p-Pb Phys. Rev. C 91 (2015) 034906
- Freeze-out radii extracted from three-pion cumulants in pp, p-Pb and Pb-Pb collisions at the LHC, Phys. Lett. B 739 (2014) 139-151
- Two and Three-Pion Quantum Statistics Correlations in Pb-Pb Collisions at √s_{NN}=2.76 TeV at the LHC Phys. Rev. C 89 (2014) 024911
- Charged kaon femtoscopic correlations in pp collisions at √s=7 TeV, Phys. Rev. D 87 (2013) 052016
- KOsKOs correlations in pp collisions at √s=7 TeV from the LHC ALICE experiment Phys. Lett. B 717 (2012) 151-161
- Femtoscopy in pp a 0.9 and 7 TeV: Phys. Rev. D 84 (2011) 112004,
- Two-pion Bose-Einstein correlations in central Pb-Pb collisions at √s_{NN}= 2.76 TeV Phys. Lett. B 696 (2011) 328-337
- Two-pion Bose-Einstein correlations in pp collisions at √s=900 GeV, Phys. Rev. D 82 (2010) 052001

• <u>Newly published papers:</u>

- Azimuthally-differential pion femtoscopy relative to the third harmonic event plane in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV, arxiv: 1803.10594
- Azimuthally differential pion femtoscopy in Pb-Pb collisions at √s_{NN}=2.76 TeV, Phys. Rev. Lett. 118 (2017) 222301
- Kaon femtoscopy in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV, Phys. Rev. C96 (2017) 064613
- Measuring KOSK± interactions using Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}}$ =2.76 TeV, Phys. Lett. B 774 (2017) 64

• Preliminary results:

- Baryon results:
 - $p\overline{p}, \overline{pp}, pp$ from Run2
 - Baryon-baryon correlations (pA, $\overline{p}\overline{\Lambda}$, $\Lambda\Lambda$, and $\overline{\Lambda\Lambda}$) from Run1 and Run2
 - Baryon-antibaryon correlations ($p\overline{p}$, and $p\overline{\Lambda}$, $\overline{p}\Lambda$, and $\Lambda\overline{\Lambda}$) from Run1 and Run2
 - Analysis of heavier baryons (eg. p Ξ , $\overline{p}\Xi$)
- Lambda-K+, Lambda-K-, and Lambda-K0s
- Kaon-proton
 22-26 May 2018, WPCF 2018

Małgorzata Janik (WUT)

New since last WPCF

Femtoscopy technique

• Femtoscopy – measures space-time characteristics of the source using particle correlations in momentum space

22-26 May 2018, WPCF 2018

How does it look like?

Correlation functions have different shapes, depending on the pair type (interaction involved), collision system and energy, pair transverse momentum, etc.

Małgorzata Janik (WUT)

22-26 May 2018, WPCF 2018

Sources of correlations

We parametrize the source:

$$S(\vec{r}) \sim \exp\left(-\frac{r_{out}^{2}}{4R_{o}^{2}} - \frac{r_{side}^{2}}{4R_{s}^{2}} - \frac{r_{long}^{2}}{4R_{l}^{2}}\right) > C = 1 + \lambda \exp\left(-R_{o}^{2}q_{o}^{2} - R_{s}^{2}q_{s}^{2} - R_{l}^{2}q_{l}^{2}\right) \\ \left|\Psi(\vec{q},\vec{r})\right|^{2} = 1 + \cos\left(\vec{q}\,\vec{r}\right) > C = 1 + \lambda \exp\left(-R_{o}^{2}q_{o}^{2} - R_{s}^{2}q_{s}^{2} - R_{l}^{2}q_{l}^{2}\right) \\ = 1 + \lambda \exp\left(-R_{o}^{2}q_{o}^{2} - R_{s}^{2}q_{s}^{2} - R_{l}^{2}q_{l}^{2}\right)$$

 The size (or sizes in 3D) R is referred to as the "HBT radius" $r^{(q)}$ r^{-1} \bar{R} q (GeV/c) 8/23

22-26 May 2018, WPCF 2018

Kaon femtoscopy

Cleaner signal compared to pions (less affected by resonances) 1.15 $K^{\pm}K^{\pm}$ ALICE 0-10% $0.2 < k_{\tau} < 0.4$ (GeV/c) Studying neutral and charged QS + Coulomb fit kaons together provides a Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ Cprojected (q_{out,side,long}) convenient consistency check (different experimental techniques) Charged Kaons: QS + Strong and Coulomb FSI Neutral Kaons: QS + Strong FSI (including resonances) 0.95 -0.2 -0.1 0.2 0.2 0.1 0.2 0.2 -0.1 0.1 0.2 $q_{\rm long}~({\rm GeV}/c)$ $q_{\rm out} \, ({\rm GeV}/c)$ $q_{\rm side}$ (GeV/c) Models which describe pions well, should describe kaons with ALICE 0-10% Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV equal precision C projected (q out, side, long) 9.1 1.0 < k₊ < 1.5 GeV/c Rescattering phase has different K⁰₆K⁰ influence on pions and kaons \rightarrow QS+FSI fit can lead to broken m_{T} -scaling \rightarrow QS part only good probe of the rescattering phase effects 0.8 $q_{long}^{0.1}$ (GeV/c) ٥. 0.2 0.1 0.2 0 0.2 0.1 0 q____(GeV/c) q_{out} (GeV/c)

•

Małgorzata Janik (WUT)

Phys. Rev. C96 (2017) 064613

Kaon femtoscopy

 $R_{\rm out}~({
m fm})$

Results:

- Data are compared to models with and without rescattering phase. Broken m_{T} -scaling indicates the importance of the hadronic rescattering phase at LHC energies
- Emission times for pions and kaons extracted
 - $-R_{\text{long}}^2 = \tau_{\text{max}}^2 \frac{T_{\text{max}}}{m_{\text{T}} \cosh y_{\text{T}}} (1 + \frac{3T_{\text{max}}}{2m_{\text{T}} \cosh y_{\text{T}}})$ Y. Sinyukov, et al Nucl. Phys. A946 (2016) 227-239
 - The measured emission time of kaons is larger than that of pions.

More on emission times: A. Kisiel

Małgorzata Janik (WUT)

method T (GeV) τ_{π} (fm/c) τ_K (fm/c) α_{π} α_K fit with Eq. (9) 9.3 ± 0.2 11.0 ± 0.1 0.144 5.0 2.2 fit with Eq. (9) 4.3 ± 2.3 9.5 ± 0.2 0.144 1.6 ± 0.7 11.6 ± 0.1

K⁰_cK⁰

Syst. unc.

HKM $\pi\pi$ w rescatt.

HKM ππ w/o rescatt.

Pion-kaon femtoscopy

QM2018, Ashutosh Pandey

unknown

Pion-kaon femtoscopy

- <u>Data points</u>: significant negative pion-kaon emission asymmetry is observed which increases with centrality
 - on average, pions are emitted closer to the centre/later than kaons
- <u>Model studies</u>: the pion-kaon data is consistent with delay seen by pion-pion & kaon-kaon analysis. It is independent and possibly more precise measurement of such delay
 - different particle species freeze-out at different times

More on emission times: A. Kisiel, WPCF2018 12/23

22-26 May 2018, WPCF 2018

Azimuthally differential pion femtoscopy Phys. Rev. Lett. 118, 222301

- $0.2 < k_{\rm T} < 0.3 \, {\rm GeV}/c$
- $0.3 < k_{T} < 0.4 \text{ GeV}/c$
- $0.4 < k_{T} < 0.5 \, \text{GeV}/c$
- $0.5 < k_{\tau} < 0.7 \text{ GeV}/c$

- First azimuthally differential measurements of the pion source size relative to the second harmonic event **plane** in Pb-Pb at $\sqrt{s_{NN}}$ =2.76 TeV.
 - Reflects spatial geometry.
- R_{side} and R_{out} oscillate out of phase, similar to what was observed at RHIC.
- Pion source at the freeze-out is elongated in the out-of-plane direction.

22-26 May 2018, WPCF 2018

Azimuthally differential pion arXiv:1803.10594 femtoscopy

- First azimuthally differential measurements of the pion source size relative to the third harmonic event plane in Pb-Pb at √s_{NN}=2.76 TeV
- HBT radii oscillations relative to the
 - 2nd harmonic event plane: reflect the spatial geometry of the source,
 - 3rd harmonic event plane: predominantly defined by the velocity fields

The observed radii oscillations signal a collective expansion and anisotropy in the velocity fields

Azimuthally differential pion arXiv:1803.10594 femtoscopy

Blast-Wave source parameters: $a_3 - final source anisotropy$ $\rho_3 - transverse flow$

 a_3 is close to zero, significantly smaller than the initial triangular eccentricities that are typically of the order of 0.2–0.3

- First azimuthally differential measurements of the pion source size relative to the third harmonic event plane in Pb-Pb at √s_{NN}=2.76 TeV
- HBT radii oscillations relative to the
 - 2nd harmonic event plane: reflect the spatial geometry of the source,
 - 3rd harmonic event plane: predominantly defined by the velocity fields

- The observed radii oscillations signal a collective expansion and anisotropy in the velocity fields
- A comparison of the measured radii oscillations with the Blast-Wave model calculations indicate that the initial state triangularity is washed-out at freeze out

22-26 May 2018, WPCF 2018

16/23

- Pair wave function Ψ can be parametrized with scattering length f₀, and effective radius d₀ parameters.
- The correlation function is characterized by **three parameters**:
 - radius R, scattering length f_0 , and effective radius d_0
 - cross section σ (at low k*) is simply: $\sigma = 4\pi |f|^2$

Potential applications

- Input to models with re-scattering phase (eg. UrQMD):
 - annihilation cross sections only measured for <u>pp</u>, <u>pn</u>, and <u>pd</u> pairs UrQMD currently **guesses it for other systems** from pp pairs
- Structure of baryons/search for CPT violation STAR, Nature 527, 345-348 (2015)
- Search for H-dibaryon ALICE, PLB 752 (2016) 267-277
- Hypernuclear structure theory Nucl.Phys. A914 (2013) 377-386
- Neutron star equation of state Nucl.Phys. A804 (2008) 309-321
- Relativistic heavy-ion collisions at LHC or RHIC produce very similar number of baryons and antibaryons, "matter-antimatter pair factories"

Baryon-antibaryon correlations

Explanation of the fitting procedure:

 \mathbf{X}^2 is calculated from a "global" fit to all functions:

2 data sets, 3 pair combinations, 6 centrality bins (**total 36 functions**)

- simultaneous fit accounts for parameters shared between different systems (such as AA scattering length)
- **radii scale with multiplicity** for a given system $R_{inv} = a \cdot \sqrt[3]{N_{ch}} + b$
- for different systems we assume **radii scaling with** m_T
- Fractions of **residual pairs** taken from AMPT

Małgorzata Janik (WUT)

•

Baryon-antibaryon correlations

Conclusions from fitting:

- Interaction parameters are measurable
- Scattering parameters for all baryon-antibaryon pairs are similar to each other (UrQMD assumption is valid)
- We observe a negative real part of scattering length → repulsive strong interaction or creation of a bound state (existence of baryon-antibaryon bound states?)
- Significant positive imaginary part of scattering length – presence of a non-elastic channel – annihilation

22-26 May 2018, WPCF 2018

Baryon-baryon correlations

- ALICE particle identification capabilities allow us to measure correlations of different baryons
- Except for pairs like proton-proton or proton-neutron, cross sections for other baryons practically not known
- more accurate results with 13 TeV LHC Run2 data → See talk by Bernhard Hohlweger, Wed 17:30

New results from following systems:

- Proton-proton
- Proton-lambda
- Lambda-Lambda
- Proton-Xi

22-26 May 2018, WPCF 2018

Other interesting pairs

- Many other interesting correlations are currently studied by ALICE
- Lambda-kaon (both charged and neutral) pairs
 - scattering parameters measured for the first time
- ΛK⁺ shows greater suppression at low k* compared to: ΛK⁻:
 - effect arising from ss annihilation compared to uu?
 - or S=0 ΛK⁺ system has more interaction channels than S=-2 ΛK⁻?
- For details see Quark Matter
 2017 poster by J. Buxton
 http://cern.ch/go/qwF7

22-26 May 2018, WPCF 2018

Summary

- "Traditional" femtoscopy results from ALICE:
 - Kaon and pion-kaon femtoscopy suggest that kaons are emitted later than pions. Data show 2.1 fm/c delay between pion and kaon average emission time.
 - Pion source at the freeze-out is elongated in the outof-plane direction. Initial state triangularity is washed-out at freeze out.
- ALICE can probe strong interaction cross sections with femtoscopy
- Correlations of baryons reveal interesting features and baryons in general seem to be of great importance:
 - Unique experimental environment at RHIC and LHC
 → "matter-antimatter pair factories"

22-26 May 2018, WPCF 2018