PHENIX results on the Lévy stable Bose-Einstein correlation functions

Sándor Lökös for the PHENIX Collaboration

Eötvös University & Eszterházy University, Hungary

The PHENIX experiment

2) Bose-Einstein correlation

S PHENIX Lévy HBT results (VNN = 200 GeV, 0-30%)

BEC

PHENIX result

The PHENIX Experiment

- Versatile detector, operating until 2016
- Tracking via Drift Chambers and Pad Chambers
- Charged pion ID with TOF, from ~ 0.2 to 2 GeV/c
- This analysis: PID also with EMCal

BEC

PHENIX results

Summary & outlook

The PHENIX Experiment

- Versatile detector, operating until 2016
- Tracking via Drift Chambers and Pad Chambers
- Charged pion ID with TOF, from ~ 0.2 to 2 GeV/c
- This analysis: PID also with EMCal

PHENIX runs at a glance

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
510.0												0	0			
500.0									0		0					
200.0		$\circ\circ$	$\bigcirc \bigcirc$	$\circ\circ$	ullet	0	\bigcirc	ullet	0	0	0	$\bigcirc\bigcirc\bigcirc$		$\bigcirc \bigcirc$		\mathbf{OO}
130.0	\bigcirc															
62.4				0		0				0						0
39.0										0						0
27.0											ightarrow					
22.5																0
19.6		\bigcirc									0					
14.6														0		
11.5										0						
7.7										0						
5.0								0								
Ор-	+р 💛	Au+A	Au ⊖ See d	d+Aı etails	u 🌒 (at <u>ht</u>	Cu+Ci tp://v	u O www.	U+U <mark>rhich</mark>	OC Ome.	u+Au bnl.g	ov/R	He+Au HIC/Ru	o Ins/	p+A	u 🔵 p)+Al

D	Ц		NI	Ľ	~
Г.		ᄂ	IN	1.	

BEC

PHENIX result

Summary & outlook

Outline

The PHENIX experiment

2 Bose-Einstein correlations

3 PHENIX Lévy HBT results (17/10) = 200 GeV, 0-30%

Bose-Einstein correlations

Correlation function from one- and two-particle momentum distributions:

$$C_2(p_1, p_2) = rac{N_2(p_1, p_2)}{N_1(p_1)N_2(p_2)}
ightarrow C_2(q, K) = 1 + rac{| ilde{S}(q, K)|^2}{| ilde{S}(q = 0, K)|^2}$$

where $q = p_1 - p_2$ and $K = (p_1 + p_2)/2$

Several effect could modify the correlation functions

- ▶ Like-charged pions → Coulomb correction needed: $C_{B-E} = K(q) \cdot C_m(q)$
- Strong final state interaction
- ► Effect of the resonance pions → core-halo model:

 $\blacktriangleright S = S_{\rm core} + S_{\rm halo}$

- Long-lived resonances contribute to the halo
- ▶ In-medium η' mass modification → specific, m_T dependent suppression
- Partial coherence
- Squeezed states

Lévy-type of distribution and anomalous diffusion

Expanding medium, increasing mean free path: anomalous diffusion
 Lévy-distribution from generalized central limit theorem could be valid

$$S(x, p) = \frac{1}{(2\pi)^3} \int d^3 q e^{i\mathbf{q}\mathbf{x}} e^{-\frac{1}{2}|\mathbf{x}R|^{\alpha}}$$

$$C_2 \text{ with Lévy source:}$$

$$C_2(Q) = 1 + \lambda \cdot e^{-(RQ)^{\alpha}}$$

Anomalous diffusion
Lévy-flight

 $L\acute{e}vy \text{ index} \Rightarrow \begin{cases} \alpha = 2 \text{ Gaussian } \rightarrow \text{ normal diffusion} \\ 0 < \alpha \le 2 \text{ L\acute{e}vy } \rightarrow \text{ anomalous diffusion} \end{cases}$

For details see e.g.:

- [1] Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67, nucl-th/0310042
- [2] Csörgő, Hegyi, Novák, Zajc, AIP Conf.Proc. 828 (2006) 525, nucl-th/0512060
- [3] Csörgő, PoS HIGH-pTLHC08:027 (2008), nucl-th/0903.0669
- [4] Csanád, Csörgő, Nagy, Braz. J. Phys. 37 (2007) 1002-1013

Outline

The PHENIX experiment

Bose-Einstein correlatio

3 PHENIX Lévy HBT results: $\sqrt{s_{NN}} = 200$ GeV, 0-30%

PHENIX Lévy HBT analysis

- Dataset used for the analysis:
 - Run-10, Au+Au, $\sqrt{s_{NN}} = 200$ GeV, 7.3·10⁹ events
 - 0-30% centrality was used
 - Additional offline requirements: collision vertex position less than ±30 cm
 - Particle identification:
 - time-of-flight data from PbSc e/w, TOF e/w, momentum, flight length
 - 2 σ cuts on m^2 distribution
 - Correlation variable $Q = \sqrt{(p_{1x} p_{2x})^2 + (p_{1y} p_{2y})^2 + q_{\text{long,LCMS}}^2}$, where $q_{\text{long,LCMS}}^2 = \frac{4(p_{1z}E_2 - p_{2z}E_1)}{(E_1 + E_2)^2 - (p_{1z} + p_{2z})^2}$
 - Single track cuts: 2σ matching cuts in TOF & PbSc for pions
 - Pair-cuts:
 - A random member of pairs assoc. with hits on same tower were removed
 - ► customary shaped cuts on $\Delta \varphi \Delta z$ plane for PbSc e/w, TOF e/w
- ▶ 1D corr. func. as a function of Q in various m_T bins
 - Lévy fits for 31 m_T bins (m_T from ~ 0.280 GeV/c² to ~ 0.870 GeV/c²)
 - Coulomb effect incorporated in fit function

Example C(Q) measurement result

Measured in 31 $m_T^2 = m^2 + p_T^2$ bins for $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs

arxiv:1709.05649 (accepted for publication in Phys.Rev.C) Physical parameters: R, λ, α ; measured versus pair m_T

BEC

PHENIX results

Summary & outlook

Example C(Q) measurement result

Measured in 31 $m_T^2 = m^2 + p_T^2$ bins for $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs

arxiv:1709.05649 (accepted for publication in Phys.Rev.C) Physical parameters: R, λ, α ; measured versus pair m_T

Lévy scale parameter R

arxiv:1709.05649 (accepted for publication in Phys.Rev.C)

- Similar decreasing trend as Gaussian HBT radii
- Hydro predicts $1/R_{Gauss}^2 = a + bm_T$
- Hydro behavior not invalid for R_{Lévy}!
- The linear scaling of $1/R^2$ breaks for high m_T

Lévy exponent α

arxiv:1709.05649 (accepted for publication in Phys.Rev.C)

- Measured value is far from Gaussian ($\alpha = 2$), also not expo. ($\alpha = 1$)
- More or less constant (at least within systematic errors)
- Note: $\alpha(m_T) = \text{const.}$ fit statistically not acceptable (only with syst.)

PHENIX BEC PHENIX results

arxiv:1709.05649 (accepted for publication in Phys.Rev.C)

- From the Core-Halo model, measure the core-halo fraction: $\lambda = \left(\frac{N_C}{N_C + N_H}\right)^2$
- Observed suppression at small $m_T \rightarrow$ increase of halo fraction
- Different effects can cause change in λ
- Resonance effects, partially coherent pion production
- $\lambda/\lambda_{
 m max}$ with smaller systematic uncertainties
- Precise measurement may help extract physics info

BEC

PHENIX results

Summary & outlook

A possible interpretation of $\lambda(m_T)$

arxiv:1709.05649 (accepted for publication in Phys.Rev.C)

May be connected to mass modifications (c.f. $U_A(1)$ chiral restoration)

- Decreased η' mass $\rightarrow \eta'$ enhancement \rightarrow halo enhancement
- Kinematics: η 's low m_T decay pions \rightarrow decreased λ at small m_T

• The results are not inconsistent with modified m_η

Kapusta, Kharzeev, McLerran, Phys.Rev. D53 (1996) 5028, hep-ph/9507343 Vance, Csörgő, Kharzeev, Phys.Rev.Lett. 81 (1998) 2205, nucl-th/9802074 Csörgő, Vértesi, Sziklai, Phys.Rev.Lett. 105 (2010) 182301, arXiv:0912.5526

Interesting scaling parameter \widehat{R}

Interesting scaling parameter R

arxiv:1709.05649 (accepted for publication in Phys.Rev.C)

- Empirically found scaling parameter
- Remarkably linear in m_T
- Physical interpretation \rightarrow open question

BEC

PHENIX resu

Summary & outlook

Outline

The PHENIX experiment

2) Bose-Einstein correlation

PHENIX Lévy HBT results 1/7/10 = 200 GeV, 0-30%

4 Summary & outlook

Sándor Lökös for PHENIX Eötvös University & Eszterházy University

- ► Lévy fits gives acceptable description ↔ anomalous diffusion?
- ▶ Nearly constant α , away from 2, 1 and 0.5 \leftrightarrow distance to CEP?
- Linear scaling of $1/R^2(m_T) \leftrightarrow$ hydro?
- ▶ Low- m_T decrease in $\lambda(m_T) \leftrightarrow$ resonances, η' in-medium mass?
- Empirically found scaling parameter $\widehat{R} = R/(\lambda \cdot (1 + \alpha))$
- Current projects and plans:
 - Centr. and coll. en. dependence: Dániel Kincses's talk on Saturday
 - 3D HBT analysis: Máté Csanád's talk on Wednesday
 - 3-particle analysis: Máté Csanád's talk on Wednesday
 - kaon-kaon correlation, Lévy HBT in p+p collision, ...

Thank you for your attention!

Outline

Run4 preliminary&Gauss \rightarrow Run10 preliminary&Lévy

Backup slides

STAR centrality dependent results (left) and the comparison of STAR results in different energy with NA44 data (right)

Backup

Lévy source function and kinematic variables

Basic two-particle variables

$${\cal K}^{\mu}=rac{p_{1}^{\mu}+p_{2}^{\mu}}{2}, \qquad q^{\mu}=p_{1}^{\mu}-p_{2}^{\mu}, \qquad q_{inv}=\sqrt{-q^{\mu}q_{\mu}}$$

- $\sim C_2(q_{inv})$ Lorentz invariant 1 dimensional function
- ► $|k| = \frac{1}{2}\sqrt{q_{out}^2 + q_{side}^2 + q_{long}^2}$ instead of q_{inv} better
- $C_2(|k|)$ 1 dim. function
- Generalized Gaussian Lévy-distribution
 - Anomalous diffusion
 - Generalized limit theorem $\mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3 q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$ $S(r) = (1 - \sqrt{\lambda})\mathcal{L}(\alpha, R_H, r) + \sqrt{\lambda} \cdot \mathcal{L}(\alpha, R_C, r)$ (1)
- Shape of the correlation functions with Lévy source $(R_H \to \infty)$: $C_2(|k|) = 1 + \lambda \cdot e^{-(2R|k|)^{\alpha}}$ (2)