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4Key Lab. of Quark and Lepton Physics, 430079, China
5 Inst. Particle Physics, CCNU, Wuhan 430079, China

We highlight some of the interesting properties of a new and finite, exact
family of solutions of 1 + 1 dimensional perfect fluid relativistic hydrody-
namics. After reviewing the main properties of this family of solutions, we
present the formulas that connect it to the measured rapidity and pseudo-
rapidity densities and illustrate the results with fits to p+p collisions at
8 TeV, Pb+Pb collisions at

√
sNN = 5.02 TeV, and Au+Au collisions at√

sNN = 200 GeV.

1. Introduction

In this manuscript we discuss a new family of exact solutions of per-
fect fluid hydrodynamics for a 1+1 dimensional, longitudinally expanding
fireball. The applications of 1+1 dimensional hydrodynamics to particle
production in high energy physics has a long and illustrous history, that
include some of the most renowned theoretical papers in high energy heavy
ion physics.

In high energy collisions, thermal models to describe particle produc-
tion rates were introduced by Fermi in 1950 [1]. It was soon pointed out
by Landau, Khalatnikov and Belenkij [2–4], that the momentum spectrum
can also be explained in these collisions if one assumes not only global but
also local thermal equilibrium. Landau and collaborators predicted [4], that
perfect fluid hydrodynamical modelling will be a relevant tool for the analy-
sis of experimental data of strongly interacting high energy collisions. After
60 years, this field is still interesting and surprizing, as reviewed recently in
ref. [5]. Applications of exact solutions of relativistic hydrodynamics to de-
scribe pseudo-rapidity distributions in high energy collisions were reviewed
in recently ref. [6].

(1)
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2. Equations of relativistic hydrodynamics

Relativistic perfect fluids are locally thermalized fluids, their dynamical
equations of motion correspond to the local conservation of the flow of
entropy and the flow of four-momentum:

∂µ (σuµ) = 0, , (1)

∂νT
µν = 0, (2)

where the entropy density is denoted by σ = σ(x), four-velocity is uµ,
normalized as uµuµ = 1, and the energy-momentum four-tensor is denoted
by by Tµν . These fields are functions of the four-coordinate xµ = (t, r) =
(t, rx, ry, rz). Similarly, the four-momentum is denoted by pµ = (Ep,p) =

(Ep, px, py, pz), where the energy is on mass-shell, Ep =
√
m2 + p2, where

the mass of the observed type of particle is indicated by m.
The energy-momentum four-tensor Tµν of a perfect fluid is given as

Tµν = (ε+ p)uµuν − pgµν , (3)

where the metric tensor is gµν = diag(1,−1,−1,−1), the energy density is
indicated by ε and the pressure by p.

The five dynamical equations of relativistic hydrodynamics connect six
variables, the entropy, the energy density, the pressure and the three spatial
components of the four-velocity uµ = γ(1,v). This set of equations is closed
by the equation of state, that characterizes the properties of the flowing
matter. We assume, that this is given by

ε = κp, (4)

where in this paper, κ is assumed to be a temperature T independent con-
stant. For net baryon free matter, the baryochemical potential is µB = 0,
hence the fundamental thermodynamical relation reads as ε + p = Tσ, so
the temperature field can also be chosen as one of the local characteristics
of the matter.

In this paper we recapitulate a recent solution of relativistic hydrody-
namics in 1+1 dimensions, with a realistic speed of sound

cs =

√
∂ε

∂p

∣∣∣∣
σ

= 1/
√
κ (5)

where in the calculations we use the average value of the speed of sound,
cs = 0.35±0.05 as measured by the PHENIX Collaboration in

√
sNN = 200

GeV Au+Au collisions in ref. [7].
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3. The CKCJ solution

In 1+1 dimensions, it is useful to rewrite the equations of relativistic
hydrodynamics in Rindler coordinates (τ, ηx) [6,10–12]. The (longitudinal)
proper-time τ and the coordinate-space rapidity ηx are

(τ, ηx) =

(√
t2 − r2

z ,
1

2
ln

[
t+ rz
t− rz

])
, (6)

while the fluid rapidity Ω=1
2 ln
(

1+vz
1−vz

)
relates to the four- and to the three-

velocity as uµ= (cosh (Ω) , sinh (Ω)), vz=tanh (Ω).
A finite and accelerating, realistic 1+1 dimensional solution of relativis-

tic hydrodynamics was recently given by Csörgő, Kasza, Csanád and Jiang
(CKCJ) [6] as a family of parametric curves:

ηx(H) = Ω(H)−H, (7)

Ω(H) =
λ√

λ− 1
√
κ− λ

arctan

(√
κ− λ
λ− 1

tanh (H)

)
, (8)

σ(τ,H) = σ0

(τ0

τ

)λ
Vσ(s)

[
1 +

κ− 1

λ− 1
sinh2(H)

]−λ
2

, (9)

T (τ,H) = T0

(τ0

τ

)λ
κ T (s)

[
1 +

κ− 1

λ− 1
sinh2(H)

]− λ
2κ

, (10)

T (s) =
1

Vσ(s)
, (11)

s(τ,H) =
(τ0

τ

)λ−1
sinh(H)

[
1 +

κ− 1

λ− 1
sinh2(H)

]−λ/2
, (12)

where the parameter of the solutions, chosen as H that is the difference
between the fluid rapidity Ω and the space-time rapidity ηx. The solutions
for the fields F={σ, T,Ω}, and the scaling variable s are given with explicit
dependence on the longitudinal proper-time τ and as parametric solutions
in terms the parameter H. This implies that any of the above space-time
dependent field can be plotted as parametric curves (manifolds):

(t, rz, Fs(t, rz)) = (τ cosh(ηx(H)), τ sinh(ηx(H)), Fs(τ,H)) , (13)

where the subsript s indicates that this function is to be taken from the
parametric solution, as a function of τ and H, and the functional form of
the bi-variate function F (τ,H) is in general different from the functional
form of the also bi-variate function Fs(t, rz).
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Figure 1. Illustration of a CKCJ exact solution [6] of relativistic hydrodynamics.

The top left panel shows the space-time evolution of the temperature distribution,

T (t, rz), while the bottom left panel shows the same for the fluid rapidity distri-

bution, Ω(t, rz). The top right panel shows the temperature at a constant value of

the longitudinal proper time τ , as a function of the space-time rapidity ηx, where

the dashed vertical lines indicate the lower and upper limits of the applicability of

the CKCJ solution. The bottom right panel is the same, but it indicates Ω(ηx)

which in this class of solutions is independent of the longitudinal proper time τ .

This new, longitudinally finite family of solutions is illustrated by Fig. 1,
for a realistic value of the speed of sound, c2

s = 1/κ = 0.1 and for a realistic
value of the acceleration parameter, λ = 1.14. This figure shows clearly, that
the CKCJ solution is limited to a cone within the forward light-cone around
mid-rapidity. The formulas that give the limiting values of the space-time
rapidity are determined from the requirement that the parametric curves of
the solution correspond to functions, as detailed in ref. [6].

4. Rapidity and pseudo-rapidity distributions

Let us clarify first the definition of the observables of the single-particle
spectrum in momentum-space. The pseudorapidity ηp and the rapidity y
of a final state particle with mass m and four-momentum pµ are defined

as ηp=
1
2 ln

(
p+pz
p−pz

)
and y=1

2 ln
(
E+pz
E−pz

)
, where the modulus of the three-

momentum is p = |p| =
√
p2
x + p2

y + p2
z.

The rapidity and the pseudorapidity distributions were derived from
the CKCJ solutions in ref. [6]: As a first step, these 1+1 dimensional
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solutions were embbedded to the 1+3 dimensional space. Subsequently we
assumed, that the freeze-out hypersurface is pseudo-orthogonal to the four-
velocity and utilized advanced saddle-point integration methods, to obtain
an analytic expression for the rapidity density distribution [6]:

dn

dy
≈ dn

dy

∣∣∣∣
y=0

cosh− 1
2
α(κ)−1

(
y

α(1)

)
exp

(
−m
Tf

[
coshα(κ)

(
y

α(1)

)
− 1

])
,

(14)
where α(κ) is defined as α(κ)=2λ−κ

λ−κ . The mass of the particle m is the mass

of the identified particles (typically pions). The above formula depends on

four fit parameters, κ, λ, Tf and dn
dy

∣∣∣
y=0

. These are the parameters of the

equation of state, the acceleration, the effective temperature (that corre-
sponds to the slope parameter of the invariant transverse mass spectrum
at mid-rapidity), and the value of the rapidity density at mid-rapidity. In
principle, these parameters can be determined from fits to data, but it is
easy to see that the two key parameters are the acceleration parameter λ,
and the value of the rapidity density at mid-rapidity. The latter is just
an overall normalization factor, so the shape of the rapidity distribution
is predominantly controlled by the acceleration parameter λ, that can be
extraced from fits to experimental data. However, the measurement of the
rapidity density distributions requires particle identification, so usually the
pseudorapidity densities are more readily determined.

The derivation and the conditions of validity of these approximations
cannot be detailed here, but they are given in ref. [6]. Typically these
conditions can be simplified for realistic cases to the condition that the data
are not too far from mid-rapidity, |y| < 1/(λ− 1). For λ values reported in
this paper, these conditions are satisfied. A more stringent limitation comes
from the requirement that the parametric curves describing these solutions
correspond to unique functions of the space-time rapidity ηx . The typical
values range from |ηx| < 1.03 to 2.5. For this reason and in order to reduce
the effects of fit range dependencies, in this work we compare fits to various
proton-proton and heavy ion collision data with limiting the fit range to
|ηx| < 2.5.

Using similar methods, the pseudorapidity density distribution was de-
termined as a parametric curve, where the parameter of the curve is the
momentum-space rapidity y:(

η(y) ,
dn

dη
(y)

)
=

(
1

2
log

[
p̄(y) + p̄z(y)

p̄(y)− p̄z(y)

]
,
p̄(y)

Ē(y)

dn

dy

)
, (15)

where Ā(y) denotes the rapidity dependent average value of the variable
A including the various components of the four-momentum. The Jacobian
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Figure 2. (Left) Fits with the CKCJ hydro solution [6], to CMS p+p data at√
s = 8 TeV [13] using a fixed Teff = 145 MeV. (Right) Similar fits, but for ALICE

Pb+Pb data at
√
sNN=5.02 TeV [14] in the 40-50 % centrality class, using a fixed

Teff = 270 MeV. The speed of sound is c2s = 1/κ = 0.1, fixed in both cases.

connecting the double differential (y, mt) and (η, mt) distributions has been
utilized at the average value of the transverse momentum, following ref. [10].
However, in contrast to earlier results, a new element is that this CKCJ
solution gives explicit relation between the p̄T (y), the rapidity dependent
average transverse momentum, the slope parameter at mid-rapidity Tf and
the mass of the observed particles m as follows:

p̄T (y) ≈
√
T 2
f + 2mTf

(
1 +

α(κ)

2α(1)2

Tf +m

Tf + 2m
y2

)−1

. (16)

Note, that the same functional form, a Lorentzian shape was obtained for
the rapidity dependence of the slope of the transverse momentum spectrum
in the Buda-Lund hydro model of ref. [15]. The coefficient of the y2

dependent term was considered as a free fit parameter even very recently,
in refs. [16, 17]. This coefficient is now expressed with the help of κ, the
parameter of the equation of state, as well as the mass m and the effective
slope of the invariant transverse mass dependent single particle spectra Tf
at mid-rapidity. It is remarkable, that the result of eq. (16) is independent
of the shape parameter λ, that measures the acceleration of the fluid.

The CKCJ hydro solution [6] apparently describes the pseudo-rapidity
distributions measured by the CMS experiment in p+p collisions at

√
s =

8 TeV [13] in a reasonable manner, as indicated by its fit result, shown on
the left panel of Fig. 2 using a fixed Teff = 145 MeV. Similarly, the CKCJ
hydro solution fits the recent ALICE Pb+Pb data at

√
sNN=5.02 TeV [14],

in the 40-50 % centrality class, using a fixed Teff = 270 MeV. The speed of
sound is fixed in both cases to a realistic value of c2

s = 1/κ = 0.1 [7].
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5. Discussion

It is interesting to compare the CKCJ solution discussed in the body
of this manuscript to other, well known exact solution of 1+ 1 dimensional
solutions of perfect fluid hydrodynamics.

It is rather straight-forward to show, that this class of solutions includes
the Hwa-Bjorken boost-invariant solutions of ref. [8,9], as detailed in ref. [?].
This can be obtained as taking the H � 1 limiting case first, and subse-
quently evaluating the λ→ 1 from above limit. In this case, we obtain that
the fluid rapidity Ω becomes identical with the space-time rapidity ηx, the
solution becomes boost-invariant and the rapidity distribution becomes flat.

It is interesting to note a similarity with Landau’s regular solution, [2,
4] valid also near mid-rapidity, outside the shock-wave region: In these
solutions, the fluid rapidity Ω and the temperature T are used to express the
coordinates (t, rz) = ( t(T,Ω), rz(T,Ω)), while in our CKCJ solutions, the
dependence on the longitudinal proper time τ is explicitely given, however
the dependence on the space-time rapidity ηx is given - similarly to Landau’s
case- as a parametric curve in terms of the fluid rapidity Ω.

The Csörgő-Grassi-Hama-Kodama (CGHK) family of solutions of ref.
[18] is also recovered easily, in the limit of vanishing acceleration, that cor-
responds to λ→ 1 from above.

The Csörgő-Nagy-Csanád or CNC family of solutions of refs. [10,11] can
be recovered, too, but only carefully, given that in the κ→ 1, and the λ→ 1
limits are not interchangeable. First of all, one has to start from a rewrite
of the solutions to the 1 ≤ κ < λ domain of the parameters, which is not
discussed here due to space limitations, one has to take the κ → 1 limit
only after this rewrite to recover the CNC solutions.

It is also very interesting to compare our results with the Bialas-Janik-
Peschanski or BJP solution of ref. [19]. A main feature of the BJP solu-
tions is that the fluid rapidity distribution evolves in time in an equation of
state dependent manner, and approaches asymptotically the Bjorken limit
at every fixed value of the coordinate rz for sufficiently late times. In this
sense the BJP solutions initially are similar to a static Landau solution
(but without the finite lengthscale, the ”l” parameter of Landau’s solution),
while at the end of the time evolution they asymptotically converge to a
Hwa-Bjorken flow velocity field. Our solutions reviewed here are different
in the sense that as a function of the space-time rapidity ηx the fluid rapid-
ity Ω is independent of the proper-time τ so the time evolution of the flow
field is only apparent, in our case it is due only to the change of variables
from proper-time to time. A similarity to the BJP solution and to Landau’s
solution is that our solution is obtained for an arbitrary but constant value
of the speed of sound.
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For more detailed discussions and comparisons of other solutions with
data, we refer to Section 2 of ref. [6].

6. Summary

This is the first part of a series of two papers, where we have highlighted
some of the properties of a very recently found, new family of analytic and
accelerating, exact and finite solutions of relativistic perfect fluid hydrody-
namics for 1+1 dimensionally expanding fireball, evaluated the rapidity and
the pseudo-rapidity densities from these solutions and demonstrated, that
these results describe well the pseudo-rapidity densities of proton-proton
collisions at 8 TeV colliding energy as measured by the CMS Collaboration
at LHC. Similarly, this solution also describes the pseudo-rapidity densities
in Pb+Pb collisions at

√
sNN=5.02 TeV measured by the ALICE Collabora-

tion at CERN LHC. These results indicate that the longitudinal expansion
dynamics in proton-proton collisions at CERN LHC is very similar to heavy
ion collisions at the nearly the same center of mass energies.

Our results confirm similar findings, published recently in ref. [17], that
was based on the analytically more restricted and simpler, 1+1 dimensional
Csörgő-Nagy-Csanád solutions of refs. [10, 11] . These results also suggest
that the space-time rapidity and the fluid rapidity apparently remain nearly
proportional to each other, even if the speed of sound implemented in two
different solutions becomes very different from one another.
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