Perturbative solutions of relativistic hydrodynamics arXiv:1711.05446

Bálint Kurgyis, Máté Csanád Eötvös University, Budapest, Hungary

XIII Workshop on Particle Correlations and Femtoscopy, Cracow, Poland 23 May 2018

This was supposed to be Bálint's talk, but he is a 2nd year undergrad student, and unfortunately he has four exams this week...

Hydrodynamics in high energy physics

- Strongly interacting QGP created at RHIC & LHC
- A hot, expanding, strongly interacting, (nearly) perfect fluid
- Hadrons created at the "chemical" freeze-out
- Hadron distributions decouple at "kinetic" freeze-out
- Photons and leptons "shine through"

Equations of relativistic perfect hydrodynamics

Looking for u^{μ} ,p, ϵ fields Assumptions:

- no viscosity
- no heat conduction
- local energy-momentum conservation

Energy-pressure connection: EoS

Locally conserved entropy density σ \rightarrow temperature: $T = (\epsilon + p)/\sigma$

Or locally conserved charge density $n \rightarrow$ temperature: T = p/n

Energy, momentum conservation

$$\partial_{\mu}T^{\mu\nu}=0$$

$$T^{\mu\nu} = (\epsilon + p)u^{\mu}u^{\nu} - pg^{\mu\nu}$$

Equation of state (EoS) $\epsilon = \kappa p$

Continuity equation

$$\partial_\mu(\sigma u^\mu)=0 ext{ or } \partial_\mu(nu^\mu)=0$$

Known solutions for relativistic hydrodynamics

- Many frameworks for numerical calculations
- Exact, analytic solutions important: connect initial/final state
- Famous 1+1D solutions: Landau-Khalatnikov & Hwa-Bjorken
 L. D. Landau, Izv. Akad. Nauk Ser. Fiz. 17, 51 (1953)
 I.M. Khalatnikov, Zhur. Eksp. Teor. Fiz. 27, 529 (1954)
 R. C. Hwa, Phys. Rev. D 10, 2260 (1974)
 J. D. Bjorken, Phys. Rev. D 27, 140 (1983)
- Discovery of sQGP \rightarrow Many new solutions a review: de Souza, Koide, Kodama, Prog. Part. Nucl. Phys. **86**, 35 (2016) See the WPCF2018 talks by T. Csörgő, G. Kasza, Z. Jiang
- First truly 3D relativistic solution: Hubble-flow
 Csörgő, Csernai, Hama, Kodama, Heavy Ion Phys. A21, 73, nucl-th/0306004
- Describes well experimental data
 Csanád, Vargyas, Eur. Phys. J. A 44, 473 (2010) nucl-th/09094842
- Lack of non-spherical 3D, accelerating solutions so far

How to describe *almost* known cases?

Perturbations on top of a known solution!

Perturbative handling of relativistic hydrodynamics

Perturbed fields:

- Start: a known solution
- Fields: u^{μ}, p, n
- $u^{\mu} \rightarrow u^{\mu} + \delta u^{\mu}$
- $p \rightarrow p + \delta p$
- $n \rightarrow n + \delta n$
- Similarly for $n \to \sigma$

Equations for perturbations:

- Substitute perturbations into hydro
- Substract 0th order equations
- Neglect 2nd or higher order perturbations
- Remainder: perturbed equation
- Solution yields perturbations
- Resulting fields: $\delta u^{\mu}, \delta n, \delta p$

Orthogonality criterion for the flow field

 $(u^{\mu}+\delta u^{\mu})(u_{\mu}+\delta u_{\mu})=1 \qquad \Rightarrow \qquad u^{\mu}\delta u_{\mu}=0$

Perturbations on a standing fluid: waves

Known solution: Standing fluid

- $u^{\mu} = (1, 0, 0, 0)$
- *p* = const.
- *n* = const.

These yield e.g.:

•
$$\partial_{\mu}u^{\mu} = 0$$
, $\partial_{\mu}p = 0$

•
$$u^{\mu}\partial_{\mu} = \partial_{0}$$

•
$$Q^{\mu
u} = (u^{\mu}u^{
u} - g^{\mu
u}),$$

 $Q^{\mu
u}\partial_{\mu} = (0,
abla)$

Perturbed Energy equation $\kappa\partial_0\delta p+(\kappa+1)p\partial_\mu\delta u^\mu=0$

Perturbed Euler equation $(\kappa+1)p\partial_0\delta u^
u - Q^{\mu
u}\partial_\mu\delta p = 0$

Wave equation for the pressure

$$\partial_0^2 \delta p = \frac{1}{\kappa} \Delta \delta p$$

 \rightarrow sound waves!

A realistic solution: Hubble-flow

• First exact, analytic and truly 3D relativistic solution $u^{\mu} = \frac{x^{\mu}}{\tau}$, $n = n_0 \left(\frac{\tau_0}{\tau}\right)^3 \mathcal{N}(S)$, $p = p_0 \left(\frac{\tau_0}{\tau}\right)^{3+\frac{3}{\kappa}}$

Csörgő, Csernai, Hama, Kodama, Heavy Ion Phys. A21, 73 (2004), nucl-th/0306004

- Scaling variable: $u_{\mu}\partial^{\mu}S = 0$, multipole solutions also possible Csanád, Szabó, Phys. Rev. **C 90**, 054911 (2014), arXiv:1405.3877
- Describes data (spectra, v_n, HBT) Data: PHENIX, PRC69(2004), PRL91(2003), PRL93(2004) Calculation: Csanád, Vargyas, Eur. Phys. J. A 44, 473 (2010), arXiv:0909.4842

Perturbed equations for the Hubble-flow solution

Equations for first order perturbations δu^{μ} , δp , δn :

Euler equation

$$\frac{\partial_{\mu}\delta p}{(\kappa+1)p}\left[g^{\mu\nu}-u^{\mu}u^{\nu}\right]=\frac{\kappa-3}{\tau\kappa}\delta u^{\nu}+u^{\mu}\partial_{\mu}\delta u^{\nu}$$
(1)

Energy equation

$$\kappa u^{\mu} \partial_{\mu} \delta p + \frac{3(\kappa+1)}{\tau} \delta p = -(\kappa+1) p \partial_{\mu} \delta u^{\mu}$$
(2)

Continuity equation

$$\delta u^{\mu} n \frac{\mathcal{N}'(S)}{\mathcal{N}(S)} \partial_{\mu} S + u^{\mu} \partial_{\mu} \delta n + \frac{3\delta n}{\tau} + n \partial_{\mu} \delta u^{\mu} = 0$$
(3)

Note: idea related to the work of Shi, Liao and Zhuang Phys.Rev. C90 (2014) no.6, 064912 [arXiv:1405.4546]

A class of perturbative solutions on top of Hubble flow

A class of possible solutions of the perturbative equations

$$u^{\mu} = \frac{x^{\mu}}{\tau} \qquad \rightarrow \quad \delta u^{\mu} = \delta \cdot F(\tau)g(x_{\nu})\chi(S)\partial^{\mu}S \quad (4)$$

$$p = p_0 \left(\frac{\tau_0}{\tau}\right)^{3+\frac{3}{\kappa}} \longrightarrow \delta p = \delta \cdot p_0 \pi(S) \left(\frac{\tau_0}{\tau}\right)^{3+\frac{3}{\kappa}}$$
(5)

$$n = n_0 \left(\frac{\tau_0}{\tau}\right)^3 \mathcal{N}(S) \quad \to \quad \delta n = \delta \cdot n_0 \left(\frac{\tau_0}{\tau}\right)^3 h(x_\nu) \nu(S) \qquad (6)$$

- Assume a given solution $(S, \mathcal{N}(S))$
- Choose perturbations $(\delta p, \delta u^{\mu}, \delta n)$ as above
- When are these perturbed fields also solutions?
- What are the restrictions for the F, g, h, χ, π, ν functions?

Which perturbations provide solutions?

Perturbations:

$$\delta u^{\mu} = \delta \cdot F(\tau)g(x_{\nu})\chi(S)\partial^{\mu}S$$
$$\delta p = \delta \cdot p_{0}\pi(S)\left(\frac{\tau_{0}}{\tau}\right)^{3+\frac{3}{\kappa}}$$
$$\delta n = \delta \cdot n_{0}\left(\frac{\tau_{0}}{\tau}\right)^{3}h(x_{\nu})\nu(S)$$

Restrictions for $\chi(S), \nu(S), \pi(S), h(x_{\nu}), g(x_{\nu})$

$$\frac{\chi'(S)}{\chi(S)} = -\frac{\partial_{\mu}\partial^{\mu}S}{\partial_{\mu}S\partial^{\mu}S} - \frac{\partial_{\mu}S\partial^{\mu}\ln g(x_{\nu})}{\partial_{\mu}S\partial^{\mu}S}$$
(7)
$$\frac{\pi'(S)}{\chi(S)} = (\kappa+1)\left[F(\tau)\left(u^{\mu}\partial_{\mu}g(x_{\nu}) - \frac{3g(x_{\nu})}{\kappa\tau}\right) + F'(\tau)g(x_{\nu})\right]$$
(8)

$$\frac{\nu(S)}{\chi(S)\mathcal{N}'(S)} = -\frac{F(\tau)g(x_{\nu})\partial_{\mu}S\partial^{\mu}S}{u^{\mu}\partial_{\mu}h(x_{\nu})}$$
(9)

How to find a concrete solution?

The way of finding a concrete solution

Restriction equations

$$\frac{\chi'(S)}{\chi(S)} = -\frac{\partial_{\mu}\partial^{\mu}S}{\partial_{\mu}S\partial^{\mu}S} - \frac{\partial_{\mu}S\partial^{\mu}\ln g(x_{\nu})}{\partial_{\mu}S\partial^{\mu}S}$$
(10)

$$\frac{\pi'(S)}{\chi(S)} = (\kappa+1) \left[F(\tau) \left(u^{\mu} \partial_{\mu} g(x_{\nu}) - \frac{3g(x_{\nu})}{\kappa\tau} \right) + F'(\tau) g(x_{\nu}) \right]$$
(11)

$$\frac{\nu(S)}{\chi(S)\mathcal{N}'(S)} = -\frac{F(\tau)g(x_{\nu})\partial_{\mu}S\partial^{\mu}S}{u^{\mu}\partial_{\mu}h(x_{\nu})}$$
(12)

A specific solution

Observables

A specific subclass of solutions

To obtains a concrete solution \rightarrow fix the $g(x_{\nu})$, $F(\tau)$, $h(x_{\nu})$ functions:

$$g(x_{\nu}) = 1,$$

$$F(\tau) = \tau + c\tau_0 \left(\frac{\tau}{\tau_0}\right)^{\frac{3}{\kappa}}$$

$$h(x_{\nu}) = \begin{cases} \ln\left(\frac{\tau}{\tau_0}\right) + c_{\frac{\kappa}{3-\kappa}}\left(\frac{\tau}{\tau_0}\right)^{\frac{3}{\kappa}-1} & \text{if } \kappa \neq 3\\ (1+c)\ln\left(\frac{\tau}{\tau_0}\right) & \text{if } \kappa = 3 \end{cases}$$

Remainging restrictions:

- $u_{\mu}\partial^{\mu}S = 0$
- $\frac{\partial_{\mu}\partial^{\mu}S}{\partial_{\mu}S\partial^{\mu}S}$ may depend only on *S*
- $au^2 \partial_\mu S \partial^\mu S$ may also depend only on S

Scaling variables found so far: $S = \frac{r^m}{t^m}, S = \frac{r^m}{t^m}, S = \frac{\tau^m}{t^m}$

Scaling

A specific solution

An example case

(13)

variable	Perturbations
	$\delta \mathbf{n} = \delta \mathbf{n} \left(\tau_0 \right)^{3 + \frac{3}{\kappa}} \pi$

The functions of the scaling variable:

 $S = \frac{r^m}{t^m}$

$$\delta p = \delta \cdot p_0 \left(\frac{\tau_0}{\tau}\right)^{3+\frac{3}{\kappa}} \pi(S)$$

$$\delta u^{\mu} = \delta \cdot \left(\tau + c\tau_0 \left(\frac{\tau}{\tau_0}\right)^{\frac{3}{\kappa}}\right) \partial^{\mu} S\chi(S)$$

$$\delta n = \delta \cdot n_0 \left(\frac{\tau_0}{\tau}\right)^3 \left(\ln\left(\frac{\tau}{\tau_0}\right) + c\frac{\kappa}{3-\kappa} \left(\frac{\tau}{\tau_0}\right)^{\frac{3}{\kappa}-1}\right) \nu(S)$$

$$\chi(S) = \left(\frac{r}{t}\right)^{-m-1}$$
(14)
$$\pi(S) = -\frac{(\kappa+1)(\kappa-3)}{\kappa} m\left(\frac{r}{t}\right)^{-1}$$
(15)
$$\nu(S) = m^2 \left(\frac{r}{t}\right)^{m-1} \left(\left(\frac{r}{t}\right)^2 - 1\right) \left(1 - \left(\frac{r}{t}\right)^{-2}\right) \mathcal{N}'\left(\frac{r^m}{t^m}\right)$$
(16)

A concrete solution with S = t/r, $\mathcal{N}(S) = exp(-S^{-2})$

Choice of scaling variable

$$S = \frac{t}{r} \tag{17}$$

Gaussian Hubble-flow density profile: $\mathcal{N}(S) = e^{-\frac{r^2}{t^2}} = e^{-S^{-2}}$

The functions appearing in the perturbations:

$$\chi(S) = 1 \tag{18}$$

$$\pi(S) = \frac{(\kappa+1)(\kappa-3)}{\kappa} \left(\frac{t}{r}\right) \tag{19}$$

$$\nu(S) = 2\left(\frac{t}{r}\right)^{-3} \left(1 - \left(\frac{t}{r}\right)^2\right)^2 \mathcal{N}\left(\frac{t}{r}\right)$$
(20)

Let us chose parameters which describe v_2 , $N(p_T)$, R_{HBT} Csanád, Vargyas, Eur. Phys. J. **A 44**, 473

A specific solution

Four-velocity perturbation

$$\delta u^{\mu} = \delta \cdot \left(\tau + c\tau_0 \left(\frac{\tau}{\tau_0} \right)^{\frac{3}{\kappa}} \right) \partial^{\mu} S$$
$$u^{\mu} = \frac{x^{\mu}}{\tau}$$

A specific solution

Pressure perturbation

$$p = p_0 \left(\frac{\tau_0}{\tau}\right)^{3+\frac{3}{\kappa}} \\ \delta p = \delta \cdot p_0 \left(\frac{\tau_0}{\tau}\right)^{3+\frac{3}{\kappa}} \frac{(\kappa+1)(\kappa-3)}{\kappa} S$$

Density perturbation

Calculation of observables

• Source function \rightarrow Jüttner-distribution:

$$S(x,p)d^{4}x = Nn(x)\exp\left(-\frac{p_{\mu}u^{\mu}}{T}\right)H(\tau)p_{\mu}d^{3}\Sigma^{\mu}(x^{\mu})d\tau$$
(21)

• The Cooper–Frye factor: $p_\mu d^3 \Sigma^\mu(x^\mu) = rac{p_\mu u^\mu}{u^0} d^3 x$

- Freeze out at constant proper time $ightarrow {\it H}(au) = \delta(au- au_0)$
- The perturbed source function:

$$S(x,p) = Nn(x) \exp\left(-\frac{p_{\mu}u^{\mu}}{T}\right) \delta(\tau - \tau_0) \frac{p_{\mu}u^{\mu}}{u^0} \cdot (1 + \Delta) d\tau dx^3$$
$$\Delta = \left[\frac{\delta u^0}{u^0} + \frac{p_{\mu}\delta u^{\mu}}{p_{\nu}u^{\nu}} - \frac{p_{\mu}\delta u^{\mu}}{T} + \frac{p_{\mu}u^{\mu}\delta T}{T^2} + \frac{\delta n}{n}\right]$$

• Single-particle distribution:

$$N_1(p) = \int S(x, p) d^4x \tag{22}$$

Single particle transverse momentum distribution

Two component Gaussian:

Used parameters: describes hadronic & photonic data (v_2 , R_{HBT} , $N(p_T)$) M. Csanád, M. Vargyas, Eur. Phys. J. **A 44**, 473 (2010)

Effective temperatures:

Hubble-flow results very stable against perturbations!

A specific solution

HBT-radii for S = t/r

Size of the source \rightarrow HBT-radii • $R^{-2} \propto m_t$ scaling

Parameters: $\delta = 0.5$, c = -3

Summary

Hubble-flow

Perturbations

$$p^{\mu} = \frac{x^{\mu}}{\tau}$$

$$p = p_0 \left(\frac{\tau_0}{\tau}\right)^{3+\frac{3}{\kappa}}$$

$$n = n_0 \left(\frac{\tau_0}{\tau}\right)^3 \mathcal{N}(S)$$

$$\delta u^{\mu} = \delta \cdot F(\tau)g(x_{\nu})\chi(S)\partial^{\mu}S$$
$$\delta p = \delta \cdot p_{0}\pi(S)\left(\frac{\tau_{0}}{\tau}\right)^{3+\frac{3}{\kappa}}$$
$$\delta n = \delta \cdot n_{0}\left(\frac{\tau_{0}}{\tau}\right)^{3}h(x_{\nu})\nu(S)$$

Conclusions:

- A method of finding perturbations
- Analytic understanding of "ripples" possible
- Observables very stable in Hubble-flow case

Outlook:

- Hubble-flow with non-spherical symmetry?
- Other auxiliary functions, waves?
- Perturbations on top of other solutions? Thank you for your attention!

Equations of non-relativistic hydrodynamics

Looking for (u, p, ρ) fields Assumptions:

- zero viscosity
- zero heat conductivity

Euler-equation

$$rac{\partial u}{\partial t} + (u
abla) u = -rac{1}{
ho}
abla p$$

Continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla(\rho u) = 0$$

Equation of state

 $p - \rho$ relation

Known solution: Standing fluid

- *u* = 0
- p = const.
- $\rho = \text{const.}$

Sound speed from equation of state:

$$\frac{\delta p}{\delta \rho} = c^2$$

Perturbed Euler-equation

$$\frac{\partial \delta u}{\partial t} = -\frac{1}{\rho} \nabla \delta \boldsymbol{p}$$

Perturbed continuity equation

$$\frac{\partial \delta \rho}{\partial t} + \rho \nabla \delta u = \mathbf{0}$$

Wave solution for pressure
$rac{\partial^2 p}{\partial t^2} = c^2 \Delta p$

Two equations:

- Lorentz-orthogonal to u^{μ}
- Lorentz-perpendicular to u^{μ}

Euler equation

$$(\kappa+1)
ho u^
u \partial_
u u^\mu = (g^{\mu
u} - u^\mu u^
u) \partial_
u
ho$$

Energy equation

$$\kappa u^{\mu}\partial_{\mu}p + (\kappa + 1)p\partial_{\mu}u^{\mu} = 0$$

Perturbative equations in general

Euler equation

$$(\kappa+1)\delta p u^{\mu}\partial_{\mu}u^{\nu} + (\kappa+1)p\delta u^{\mu}\partial_{\mu}u^{\nu} + (\kappa+1)p u^{\mu}\partial_{\mu}\delta u^{\nu} = (g^{\mu\nu} - u^{\mu}u^{\nu})\partial_{\mu}\delta p - \delta u^{\mu}u^{\nu}\partial_{\mu}p - u^{\mu}\delta u^{\nu}\partial_{\mu}p$$
(23)

Energy equation

$$\kappa\delta u^{\mu}\partial_{\mu}\boldsymbol{p} + \kappa u^{\mu}\partial_{\mu}\delta\boldsymbol{p} + (\kappa+1)\delta\boldsymbol{p}\partial_{\mu}u^{\mu} + (\kappa+1)\boldsymbol{p}\partial_{\mu}\delta u^{\mu} = 0$$
(24)

Continuity equation

$$u^{\mu}\partial_{\mu}\delta n + \delta n\partial_{\mu}u^{\mu} + \delta u^{\mu}\partial_{\mu}n + n\partial_{\mu}\delta u^{\mu} = 0$$
 (25)

Pressure perturbation

Four-velocity perturbation

$$\delta p = \delta \cdot p_0 \left(\frac{\tau_0}{\tau}\right)^{3+\frac{3}{\kappa}} \pi(S). \quad (26) \qquad \delta u^{\mu} = \delta \cdot F(\tau)g(x_{\mu})\partial^{\mu}S \cdot \chi(S) \quad (27)$$

• Orthogonality satisfied
$$(\delta u_{\mu}u^{\mu}=0)$$

Energy equation

$$\frac{\chi'(S)}{\chi(S)} = -\frac{\partial_{\mu}\partial^{\mu}S}{\partial_{\mu}S\partial^{\mu}S} - \frac{\partial_{\mu}S\partial^{\mu}\ln g(x_{\mu})}{\partial_{\mu}S\partial^{\mu}S}$$
(28)

Right side is a function of S!

Using (26) and (27) perturbations:

Euler equation:

$$\frac{\pi'(S)}{\chi(S)} = (\kappa+1) \left[F(\tau) \left(u^{\mu} \partial_{\mu} g(x_{\mu}) - \frac{3g(x_{\mu})}{\kappa \tau} \right) + F'(\tau) g(x_{\mu}) \right]$$
(29)

- Right side is a function of S
- Restriction for *S*, $g(x_{\mu})$, $F(\tau)$

The particle density perturbation

Using (27) form of perturbation

$$\delta n = \delta \cdot n_0 \left(\frac{\tau_0}{\tau}\right)^3 h(x_\mu) \nu(S) \qquad (30)$$

Continuity equation

$$\frac{\nu(S)}{\chi(S)\mathcal{N}'(S)} = -\frac{F(\tau)g(x_{\mu})\partial_{\mu}S\partial^{\mu}S}{u^{\mu}\partial_{\mu}h(x_{\mu})}$$
(31)

Right side is a funciton of S

• Restriction for *S*, $h(x_{\mu})$, $F(\tau)$

Scaling variable $S = r^m / \tau^m$

Scaling variable $S = r^m / \tau^m$

$$\chi(S) = \frac{S^{-\frac{m+1}{m}}}{\sqrt{S^{\frac{2}{m}} + 1}}$$
(32)
$$\pi(S) = \frac{(\kappa + 1)(\kappa - 3)}{\kappa} \left[\pi_0 - m\sqrt{1 + S^{-\frac{2}{m}}} \right],$$
(33)
$$\nu(S) = m^2 S^2 \left[S^{-\frac{2}{m}} + 1 \right] \frac{S^{-\frac{m+1}{m}}}{\sqrt{S^{\frac{2}{m}} + 1}} \mathcal{N}'(S)$$
(34)

Scaling variable $S = \frac{\tau^m}{t^m}$

Scaling variable $S = \tau^m / t^m$

$$\chi(S) = \frac{S^{\frac{2}{m}-1}}{\left(1-S^{\frac{2}{m}}\right)^{\frac{3}{2}}}$$
(35)
$$\pi(S) = \frac{(\kappa+1)(\kappa-3)}{\kappa} \left(\pi_0 + \frac{m}{\sqrt{1-S^{\frac{2}{m}}}}\right)$$
(36)
$$\nu(S) = m^2 S^2 \frac{S^{\frac{2}{m}-1}}{1-S^{\frac{2}{m}}} \mathcal{N}'(S)$$
(37)

Perturbed fields

- $u \rightarrow u + \delta u$
- $p \rightarrow p + \delta p$
- $\bullet \ \rho \to \rho + \delta \rho$

Perturbed equations

- first order perturbation
- using another solution

Source function

$$\begin{split} S(x,p) &= N\delta(\tau-\tau_0)d\tau d^3xn_0 \left(\frac{\tau_0}{\tau}\right)^3 \mathcal{N}(S) \\ \exp\left[-\frac{Et - xp_x - yp_y - zp_z}{\tau T_0 \left(\frac{\tau_0}{\tau}\right)^{\frac{3}{\kappa}}} \mathcal{N}(S)\right] \left(E - \frac{xp_x + yp_y + zp_z}{t}\right) \cdot \\ \cdot \left[1 + \delta\left(-\frac{(\tau + c\tau_0^{\frac{\kappa-3}{\kappa}}\tau^{\frac{3}{\kappa}})\partial^0 S\chi(S)\tau}{t} + \right. \\ \left. + \frac{(\tau + c\tau_0^{\frac{\kappa-3}{\kappa}}\tau^{\frac{3}{\kappa}})\chi(S)t}{Et - xp_x - yp_y - zp_z} p_\mu \partial^\mu S + \\ \left. + \frac{(Et - xp_x - yp_y - zp_z)(\mathcal{N}(S)\pi(S) - h(x, y, z, t)\nu(S))}{\tau T_0 \left(\frac{\tau_0}{\tau}\right)^{\frac{3}{\kappa}}} + \\ \left. + \frac{h(x, y, z, t)\nu(S)}{\mathcal{N}(S)}\right) \right] \end{split}$$

Appendix

Photons from Hubble-flow solution

- Photons and leptons are created throughout the evolution
- Their distribution reveals information about the EoS!
- Compared to PHENIX data (spectra and flow) successfully
- Predicted photon HBT radii

Csanád, Májer, Central Eur. J. Phys. 10 (2012), arXiv:1101.1279

Data: PHENIX Collaboration, arXiv:0804.4168 and arxiv:1105.4126

• Average EoS: $c_s = 0.36 \pm 0.02_{stat} \pm 0.04_{syst}$ (i.e. $\kappa = 7.7$)

Compatible with soft dilepton data as well

Single-particle distribution

$$N(p) = Nn_0 \mathcal{E}_1 \mathcal{V}_1 (1 + \mathcal{P}_1 + \mathcal{P}_2 + \mathcal{P}_3) + Nn_0 \mathcal{E}_2 \mathcal{V}_2 (\mathcal{P}_4 + \mathcal{P}_5)$$

$$(38)$$

The newly introduced functions:

$$\mathcal{E}_{1} = \exp\left[-\frac{E^{2} + m^{2}}{2ET_{0}} - \frac{p^{2}}{2ET_{eff}}\right], \quad \mathcal{V}_{1} = \sqrt{\frac{2\pi T_{0} \tau_{0}^{2}}{E} \left(1 - \frac{T_{0}}{T_{eff}}\right)^{3}} \left(E - \frac{p^{2}}{E} \left(1 - \frac{T_{0}}{T_{eff}}\right)\right), \quad (39)$$

$$\mathcal{E}_{2} = \exp\left[-\frac{E^{2} + m^{2}}{2ET_{0}} - \frac{p^{2}}{2ET_{eff},\delta}\right], \quad \mathcal{V}_{2} = \sqrt{\frac{2\pi T_{0} \tau_{0}^{2}}{E} \left(1 - \frac{T_{0}}{T_{eff},\delta}\right)^{3}} \left(E - \frac{p^{2}}{E} \left(1 - \frac{T_{0}}{T_{eff},\delta}\right)\right). \quad (40)$$

The perturbative terms are:

$$\begin{aligned} \mathcal{P}_{1} &= -\frac{\delta(1+c)\tau_{0}^{2}}{r_{1}\sqrt{\tau_{0}^{2}+r_{1}^{2}}}, \qquad \mathcal{P}_{2} &= \frac{\delta(1+c)\tau_{0}}{E - \frac{\rho^{2}\rho_{1}^{2}}{\sqrt{\tau_{0}^{2}+r_{1}^{2}}}} \left(\frac{E}{r_{1}} - (\rho^{2}\rho_{1}^{2})\frac{\sqrt{\tau_{0}^{2}+r_{1}^{2}}}{r_{1}^{3}}\right), \qquad (41) \\ \mathcal{P}_{3} &= \frac{\delta 2bc\kappa}{(3-\kappa)R_{0}^{2}} \left(\frac{r_{1}}{\sqrt{\tau_{0}^{2}+r_{1}^{2}}}\right)^{3} \left(\frac{\tau_{0}}{r_{1}}\right)^{4}, \qquad \mathcal{P}_{5} &= -\frac{\delta(\tau_{0}+c\tau_{0})}{T_{0}} \left(\frac{E}{r_{2}} - (\rho^{2}\rho_{2}^{2})\frac{\sqrt{\tau_{0}^{2}+r_{2}^{2}}}{r_{2}^{3}}\right), \qquad (42) \\ \mathcal{P}_{4} &= \frac{\delta 2bE\sqrt{\tau_{0}^{2}+r_{2}^{2}} - \rho^{2}\rho_{2}^{2}}{\dot{\kappa_{0}}^{2}\tau_{0}T_{0}} \left(\frac{(\kappa+1)(\kappa-3)}{\kappa}\frac{\tau_{0}^{2}+r_{2}^{2}}{r_{2}} - \frac{c\kappa}{3-\kappa}\tau_{0}\right) \left(\frac{r_{2}}{\sqrt{\tau_{0}^{2}+r_{2}^{2}}}\right)^{3} \left(\frac{\tau_{0}}{r_{2}}\right)^{4}. \qquad (43) \end{aligned}$$