Transverse-velocity scaling of femtoscopy in $\sqrt{s} = 7$ TeV proton-proton collisions

T. J. Humanic Department of Physics, Ohio State University

> WPCF 2018 Krakow, Poland 22 May, 2018

Outline

- \succ m_T scaling of R_{inv} in LHC experiments
- $\succ \beta_{\rm T}$ scaling of $R_{\rm inv}$ seen in LHC pp collisions
- \succ Toy MC model to mock-up β_{T} scaling

Transverse-mass (m_{τ}) scaling in 1-D identical two-particle femtoscopy

A good example of approximate m_T scaling of R_{inv} in LHC 2.76 TeV/N Pb-Pb collisions

ALICE collaboration, Phys. Rev. C **92**, 054908 (2015)

→generally considered to be a signature of collective flow resulting from early-stage hydrodynamic flow and/or final-state rescattering of the many particles produced in the heavy-ion collision, e.g. HKM (V. Shapoval, PBM, A. Karpenko, Y. Sinyukov, Nucl. Phys. A **929**, 1 (2014))

A good example of a lack of m_T scaling of R_{inv} in LHC 7 TeV pp collisions

For each species, R_{inv} increases with multiplicity, and decreases with m_T for high multiplicity and increases with m_T for low multiplicity, but no m_T scaling between pions and kaons \rightarrow No serious model calculations exist in the literature describing these results Instead of R_{inv} vs. m_T , plot the ALICE 7 TeV pp results vs. $\beta_T = k_T/m_T$ to see how this looks (T.H., J.Phys.G **45** (2018))

There appears to be an approximate β_T scaling of R_{inv} seen in the ALICE 7 TeV pp results

HI collisions $\rightarrow R_{inv}$ scales with transverse "energy" (m_T) \rightarrow correlation length ~ scales with local thermalization volume pp collisions $\rightarrow R_{inv}$ scales with transverse velocity (β_T) \rightarrow correlation length ~ scales with "free-streaming" of particles to hadronization

\rightarrow Not surprising that HI and pp collisions have different scaling since they proceed in different ways

HI collisions

- Particle production via many soft parton-parton collisions
- Hydrodynamic flow in early stage of collision
- ➢ Final-state rescattering of the many produced particles thermalize the system

pp collisions

Particle production via one or a few hard parton-parton collisions, e.g. Lund String Model picture

Relatively few particles produced in the collision resulting in little chance of final-state rescattering or thermalization In summary.....

 $m_{\rm T}$ scaling is seen in many HI collision experiments and can be explained by models

 β_{T} scaling of R_{inv} for 7 TeV pp is an empirical observation so far only seen in these data (but potentially interesting.....)

 \rightarrow Construct a simple toy model to try to mock-up $\beta_{\rm T}$ scaling in the 7 TeV pp data

A simple toy MC model to mock-up $\beta_{\rm T}$ scaling

Requirements for model to agree with 7 TeV pp experiment:

- $\succ \beta_{T}$ scaling between pions and kaons
- > Increasing R_{inv} with increasing β_T for N_{ch} 1-11
- \succ Increasing R_{inv} with increasing N_{ch}
- > Decreasing R_{inv} with increasing β_T for N_{ch} 12-22 and N_{ch} > 22

Main assumptions of toy model:

- Quasi-particle initially created from pp collision
- Quasi-particle "free-streams" to the hadronization point
- > Hadronization time obeys a Gaussian distribution in pp frame
- Particle momenta follow experimental distributions

Consider a space-time point of the *i*th particle of rest mass m_{0i} at hadronization in the pp collision frame (x_i, y_i, z_i, t_i) with $(p_{xi}, p_{yi}, p_{zi}, E_i) \rightarrow$ set from ALICE, CMS p_T and η distributions

A simple toy MC model to mock-up $\beta_{\rm T}$ scaling

* Hadronization time distribution:

$$\frac{dn}{dt_i} \propto \exp\left(-\frac{t_i^2}{2\sigma_t^2}\right)$$

* Quasi-particles "free-stream" to hadronization point:

$$x_i = x_{0i} + t_i \beta_{T_1} \cos \phi_i$$
 $y_i = y_{0i} + t_i \beta_{T_1} \sin \phi_i$ $z_i = t_i \frac{p_{zi}}{E_i}$

where, $\beta_{Ti} = \frac{p_{Ti}}{E_i}$

 x_{0i} and y_{0i} are the initial transverse coordinates from a uniform distribution of radius 1 fm, and ϕ_i is from a flat distribution between 0 - 2π

The hadronization time width σ_i is a free parameter to be adjusted to get the best agreement with the R_{inv} vs. β_T measurements

A simple toy MC model to mock-up $\beta_{\rm T}$ scaling

Quantum statistics and the Coulomb interaction are imposed pair-wise on a charged boson pair by weighting them at their hadronization phase-space points

 $W_{ij} = G(q_{inv}^{ij}) \Big[1 + \cos(\mathbf{r}_{ij} \cdot \mathbf{p}_{ij} - t_{ij}E_{ij}) \Big] \quad \text{where } X_{ij} = X_i - X_j \quad q_{inv}^{ij} = \sqrt{|\mathbf{p}_{ij}|^2 - |E_{ij}|^2}$ and $G(q_{inv}^{ij})$ is the Gamow factor

The correlation function is the ratio of weighted to un-weighted pairs

$$C(q_{\rm inv}) = \frac{N(q_{\rm inv})}{D(q_{\rm inv})}$$

and fitted with the Bowler-Sinyukov equation to extract R_{inv} ,

$$C_{\text{fit}}(q_{\text{inv}}) = a \left\{ 1 - \lambda + \lambda G(q_{\text{inv}}) \left[1 + \exp(-q_{\text{inv}}^2 R_{\text{inv}}^2) \right] \right\}$$

Sample correlation function from the model With typical fit to extract R_{inv}

The fits to the MC are not great, but adequate to extract at least qualitative values for R_{inv}

Comparison of toy model with experiment

Parameter	$N_{\rm ch}$	ππ	$K^{ch}K^{ch}$
	1 - 11	0.6	1.0
σ_t (fm/c)	12 - 22	1.5	4.5
±0.1	> 22	2.0	6.7

 $\succ \sigma_{t}$ increases with increasing N_{ch} range for both $\pi\pi$ and KK $\succ \sigma_{t}$ is larger for KK than $\pi\pi$

 \rightarrow The model can be forced to be close to the experiment and to show approximate β_{T} scaling with the appropriate choices of σ_{t}

Summary and conclusions

→ Although R_{inv} does not show m_T scaling in 7 TeV pp collisions for $\pi\pi$ and KK, it does seem to show an approximate β_T scaling instead → A simple toy model based on "free streaming" can be forced to approximately mock-up this scaling seen in experiment by suitable adjustments of the hadronization time width parameter → It would be interesting to see if other experimental pp collision studies at different energies also see this β_T scaling of R_{inv} → It would also be interesting to see if serious models, e.g. EPOS, HKM...., can describe this R_{inv} behavior seen in 7 TeV pp collisions