XYZ States at LHCb

Tadeusz Lesiak
on behalf of the LHCb collaboration
Institute of Nuclear Physics Polish Academy of Sciences, Kraków

1. LHCb spectrometer - a tool for heavy hadron spectroscopy
2. Standard vs exotic heavy hadron states

3a. Pentaquarks in $\Lambda_b \rightarrow J/\psi \ p \ K$ decay: $P_c(4380)$ and $P_c(4450)$
3b. Search for P_c states in $\Lambda_b \rightarrow J/\psi \ p \ \pi$ decay
3c. Search for P_c states in $\Lambda_b^0 \rightarrow \chi_{c(1,2)} \ p \ K^-$ decays
3d. Observation of $\Xi_b^- \rightarrow J/\psi \Lambda \ K^-$ Decay
3e. Search for b-flavoured pentaquarks

4a. The puzzling states $X \rightarrow J/\psi \ \phi$
4b. Tetraquark $X(5568)$?

5. Charged Exotic State $Z(4430)^-$
LHCb Detector
Weight: 5,600 tonnes
Height: 10 m
Length: 20 m

Precise tracking system:
ε(trk) ≈ 96 %
Momentum resolution:
\[\frac{\Delta p}{p} = 0.5 \% \quad p = 20 \text{ GeV} \]
\[0.8 \% \quad p = 100 \text{ GeV} \]

Electromagnetic and hadronic calorimeters
ECAL: \[\frac{\Delta E}{E} = \frac{10}{E \text{[GeV]}}, 10 \% \]

Muon system:
ε(μ → μ) ≈ 97 %
ε(π → μ) ≈ (1-3) %

Trigger:
Highly flexible, currently have “offline quality”

Dipole magnet:
Bending power: 4 Tm

The first hadron-collider experiment that is dedicated to heavy flavour (HF) physics

The geometry of forward spectrometer

RICH:
Separation of K, p from π:
ε(K → K) ≈ 95 %
ε(π → K) ≈ 5 %
ε(p → p) ≈ 95 %
ε(π → p) ≈ 5 %

Vertex Detector:
Impact parameter resolution:
\[\sigma_{IP} = 20 \mu m \]
Decay time resolution:
heavy hadrons: ≈50 fs

Precise trackingsystem:
ε(trk) ≈ 96 %
Momentum resolution:
\[\frac{\Delta p}{p} = 0.5 \% \quad p = 20 \text{ GeV} \]
\[0.8 \% \quad p = 100 \text{ GeV} \]

Spectrometer:
very good mass resolution \(\sigma(m_{B \rightarrow hh}) \approx 22 \text{ MeV} \)
Pros and Cons of Heavy Flavour Spectroscopy with LHCb

- **General advantages (pp interaction):**
 - High production cross-sections for HF (at the LHC are 10^3 larger than at the e^+e^- B factories)
 - Simultaneous accumulation of huge B_d, B_s, B_c and b-baryons data samples
 - The decay vertices are well separated from the production point (high boost of the b- and c-hadrons)

- **LHCb specific advantages** (single arm forward spectrometer: $0.8^\circ < \Theta < 15.4^\circ$):
 - LHCb captures a HF production cross-section, comparable to that of ATLAS and CMS (high-p_T range) in MUCH SMALLER SOLID ANGLE \Rightarrow smaller number of electronic channels \Rightarrow smaller event size \Rightarrow larger trigger bandwidth to store
 - LHCb – forward detector ($p >> p_T$): efficient muon identification for lower P_T values
 - Space to accommodate excellent RICH detectors (flavour tagging, background suppression)

- **General drawbacks:**
 - The instantaneous luminosity is limited (4×10^{32} cm$^{-2}$s$^{-1}$)
 - The efficiencies of γ, π^0 and η reconstruction are much lower to compare with the e^+e^-
All results presented here correspond to Run 1 data: 3 fb$^{-1}$
4 x 10^{12} b-hadrons produced

Run 2 vs Run 1:
- more abundant production of b-hadrons
- improvements in trigger and selection efficiencies
Standard vs Exotic States

- **Standard states:**
 - Area: 312,679 km² (6th in EU, 8th in Europe)
 - Population: 38,425,000 (6th in EU, 8th in Europe)
 - Male/female: 0.94
 - Natural increase: -0.7‰ (per 1000)
 - GDP: 475 G$ (rank: 23rd)
 - GDP per capita: 12,361 $ (rank: 44th)

As from: http://stat.gov.pl
http://data.worldbank.org

- **Exotic states:**
 - **Pentaquark**
 - diquark-diquark-antiquark
 - **H-dibaryon**
 - diquark-diquark-diquark
 - **Tetraquark**
 - diquark-diantiquark

Molecule
Hybrid
Glueball
Exotic states (with heavy quarks)

- About 30 heavy, potentially exotic states observed (since 2003)
- Most of them are charmonium (cc) or bottomonium (bb) like

- Quantum numbers:

 - Unconventional charges may occur (e.g. baryon with $S=1$ or meson with electric charge $+2$)

 - Tools:
 - angular distributions, Dalitz and Argand plots, amplitude analysis, model independent approach...

- Taxonomy (general, not universally accepted, guidelines):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>pentaquarks</td>
</tr>
<tr>
<td>X</td>
<td>Neutral-charge resonances (most of them observed in B decays), positive parity</td>
</tr>
<tr>
<td>Y</td>
<td>States produced in the Initial State Radiation (ISR) processes, negative parity</td>
</tr>
<tr>
<td>Z</td>
<td>Charmonium-like, charged states (and its isospin partners)</td>
</tr>
</tbody>
</table>
Pentaquarks in $\Lambda_b^0 \rightarrow J/\psi p K^-$ Decays

- Pentaquarks stay with us from the onset of the quark model...
- Intense experimental searches (rumour about the $\Theta^+(1540)$ state...)

LHCb (2015, Run 1 data, 3fb$^{-1}$):

- Study of the decay $\Lambda_b \rightarrow [J/\psi p] K^-$
- Huge, very clean sample of Λ_bs: 26 007+166 signal events, background fraction: 5.4%

- Surprising structure in $m(J/\psi p)$

- Phys. Lett. 8 (1964) 214-215

- Pentaquarks in Λ_b^0 states at LHCb

- Intense experimental searches (rumour about the $\Theta^+(1540)$ state...)

- Anti-triplet as anti-quarks \bar{q}. Baryons can now be constructed from quarks by using the combinations $(q q q)$, $(q q q q \bar{q})$, etc., while mesons are made out of $(q \bar{q})$, $(q q q \bar{q})$, etc. It is assuming that the lowest

- PRL 115 (2015) 072001

- Standard contribution:
 - $\Lambda_b^0 \rightarrow J/\psi \mu^+ \mu^-$
 - $J/\psi \rightarrow \mu^+ \mu^-$
 - $\Lambda^+ \rightarrow K^- p$

- Exotic contribution:
 - $P_c^+ \rightarrow J/\psi p$
 - $P_c^+ -$ the minimal valence quark content: uudcc
Pentaquarks in $\Lambda_b^0 \rightarrow J/\psi p K^-$ Decays

- discovery of two hidden-charm pentaquark-like states $P_c(4380)^+$ and $P_c(4450)^+$

- The full 6D amplitude analysis using the helicity formalism and Breit-Wigner (BW) amplitudes
 - observables: resonance mass, three helicity angles, two angles between decay planes;
 - takes into account 14 well-defined Λ^* states and interference between both decay sequences

- The satisfactory description only after including two additional BW amplitudes of P_c states:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_c(4380)^+$</td>
<td>$4380 \pm 8 \pm 29$</td>
<td>$205 \pm 18 \pm 86$</td>
<td>$3/2^- (3/2^+)$</td>
</tr>
<tr>
<td>$P_c(4450)^+$</td>
<td>$4449.8 \pm 1.7 \pm 2.5$</td>
<td>$39 \pm 5 \pm 19$</td>
<td>$5/2^+ (3/2^-)$</td>
</tr>
</tbody>
</table>
Argand Diagrams (for 3/2⁻ and 5/2⁺ hypothesis)

Data points in the six equidistant bins of $m(J/\psi p)$ in the range from $(-\Gamma)$ to $(+\Gamma)$

$P_c(4450)^+$:
Consistent with resonant behaviour
(rapid counter-clockwise change of the phase around the maximum)

$P_c(4380)^+$: needs more statistics

The amplitude method is powerful but

👎 - requires the Λ^* model (spectroscopy of these states is complicated)

👍 - can provide the detailed info about new states (mass, width, J^{PC}...
Pentaquarks in $\Lambda_b^0 \rightarrow J/\psi p K^-$ Decays

- **LHCb: fortification of the P_c states observation:** Model independent approach
 - No need for the Λ^* model; can only indicate the presence of exotic states
 - 2D analysis in terms of $\langle m(Kp), \cos \theta_{\Lambda^*} \rangle$ (θ_{Λ^*} - helicity angle of the K-p system)
 - The $\cos \theta_{\Lambda^*}$ ang. Distribution is expanded in Legendre polynomials (in bins of $m(Kp)$):

 $\frac{dN}{d\cos \theta_{\Lambda^*}} = \sum_{l=0}^{l_{\text{max}}} \langle P_l^{\perp} \rangle P_l(\cos \theta_{\Lambda^*})$

 - Λ^* resonances can contribute only to low order moments up to $l_{\text{max}} = 2J_{\text{max}}$
 - J_{max} – the highest spin of any Kp contribution at the given m_{kp} bin

- \(< P_l^{\perp} >\) - Legendre moments: contain all the information of the angular structure of the system as well as the spin of Λ^* resonances

- The [Kp] mass and angular distributions are projected as reflection into the $J/\psi p$ system

- 9σ discrepancy with data, assuming only Λ^* contributions (H0 hypothesis)

- The discrepancy concentrated in the region of mass corresponding to the P_c states (best seen on the $m(J/\psi p)$ distribution)
Pentaquarks in $\Lambda_b^0 \rightarrow J/\psi p \pi^-$ Decays

- The Cabibbo suppressed mode \[\frac{B(\Lambda_b \rightarrow J/\psi p \pi^-)}{B(\Lambda_b \rightarrow J/\psi K^-)} = 0.0824 \pm 0.0024 \pm 0.0012 \]
- 1885+50 Λ_b candidates
 Run 1 data, 3fb$^{-1}$

- The background fraction is higher by a factor of three
 - Four contributions - three of them exotic - considered:
 - $N^* \rightarrow p\pi^-$
 - $P_c(4380)^+ \rightarrow J/\psi p$
 - $P_c(4450)^+ \rightarrow J/\psi p$
 - $Z_c(4200)^- \rightarrow J/\psi \pi^-$

 (The masses and widths of N^* and P_c states are fixed; $Z_c(4200)^-$ parameters set free)

 - The data favour the existence of exotic contributions
 - 3.1σ significance if both types of exotic resonances are included: $P_c(4380)^+ & P_c(4450)^+ & Z_c(4200)^-$
 - 3.3σ for the P_cs, assuming that the $Z_c(4200)^-$ contribution is negligible: $P_c(4380)^+ & P_c(4450)^+$

 Reported by Belle in $(J/\psi \pi)$ (2014)

 $$M = 4196^{+31}_{-29}^{+17}_{-13} \text{ MeV}$$
 $$\Gamma = 370 \pm 70^{+70}_{-132} \text{ MeV}$$
 $$J^P = 1^+$$

 $PRL 117 (2016) 082003$
The First Observation of $\Lambda_b^0 \rightarrow \chi_{c(1,2)} p K^-$

Motivation:

1. Test the kinematic rescattering effect (KRE) hypothesis
 - The mass of $P_c(4450)$ is very close to the $[\chi_{c1}p]$ threshold
 \[m_{P_c(4450)}^+ - m_{\chi_{c1}} - m_p = (0.9 \pm 0.3) \text{ MeV} \]
 - If $P_c(4450)^+$ is due to KRE \(\Rightarrow \) should NOT be observed as a narrow enhancement near the $[\chi_{c1}p]$ threshold in the $\Lambda_b \rightarrow \chi_{c1}pK^-$ mode

2. Test the factorisation approach: the decay with χ_{c2} is expected to be suppressed w.r.t. that with χ_{c1}

LHCb: both $\Lambda_b \rightarrow \chi_{c1}pK^-$ and $\Lambda_b \rightarrow \chi_{c2}pK^-$ observed for the first time

Ad 1. distributions of $m(\chi_{c1}p)$ and $m(pK)$ studied – more statistics needed for the amplitude analysis
Run 1 & 2: \(>1000 \chi_{c1} \) candidates

Ad 2. $\frac{\mathcal{B}(\Lambda_b \rightarrow \chi_{c2}pK^-)}{\mathcal{B}(\Lambda_b \rightarrow \chi_{c1}pK^-)} = 1.02 \pm 0.11$ - no χ_{c2} suppression,

\[\frac{\mathcal{B}(B^0 \rightarrow \chi_{c2}K^{*0})}{\mathcal{B}(B^0 \rightarrow \chi_{c1}K^{*0})} = 0.17 \pm 0.05 \]

T.Lesiak
XYZ states at LHCb
WPCF18
25 May 2018
Motivation: search for possible (udsc\bar{c}) states, decaying to (J/\psi \Lambda) pair

LHCb: the first observation of the \(\Xi_b^- \rightarrow J/\psi \Lambda K^- \) decay

Results:

\[
\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{B(\Xi_b^- \rightarrow J/\psi \Lambda K^-)}{B(\Lambda_b^0 \rightarrow J/\psi \Lambda)} = (4.19 \pm 0.29 \pm 0.15) \times 10^{-2}
\]

\[
m(\Xi_b^-) - m(\Lambda_b^0) = (177.08 \pm 0.47 \pm 0.16) \text{ MeV}
\]

The amplitude analysis, in search for (udsc\bar{c}) states, feasible with the full data sample of Run 2
The (uudc̅) states observed (decaying strongly)

The Skyrme model:
- expectation of b-flavoured pentaquarks $P_b(bqqqq/\bar{b}qqqq)$, that decay via the weak interaction and are
 - tightly bound (Skyrme model: the binding grows with the mass of the constituent quarks)
 - narrow ($\Gamma \approx 6$ MeV, to compare with (40-200) MeV for P_cs)

LHCb: the search for four types of P_b states

<table>
<thead>
<tr>
<th>Mode</th>
<th>Quark content</th>
<th>Decay mode</th>
<th>Search window</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$\bar{b}duud$</td>
<td>$P_{B^0p}^+ \rightarrow J/\psi K^+ \pi^- p$</td>
<td>4668–6220 MeV</td>
</tr>
<tr>
<td>II</td>
<td>$b\bar{u}udd$</td>
<td>$P_{L^0\pi^-}^- \rightarrow J/\psi K^- \pi^- p$</td>
<td>4668–5760 MeV</td>
</tr>
<tr>
<td>III</td>
<td>$\bar{b}d\bar{u}ud$</td>
<td>$P_{L^0\pi^+}^+ \rightarrow J/\psi K^- \pi^+ p$</td>
<td>4668–5760 MeV</td>
</tr>
<tr>
<td>IV</td>
<td>$\bar{b}suud$</td>
<td>$P_{B^0p}^+ \rightarrow J/\psi \phi p$</td>
<td>5055–6305 MeV</td>
</tr>
</tbody>
</table>

below the threshold for strong decays
Search for b-flavoured Pentaquarks

- No signal observed

- Upper limits on the P_b production ratio w.r.t. $\Lambda_b^- \rightarrow J/\psi K^- p$

$$R = \frac{\sigma(pp \rightarrow P_b X) \cdot B(P_b \rightarrow J/\psi X)}{\sigma(pp \rightarrow \Lambda_b^0 X) \cdot B(\Lambda_b \rightarrow J/\psi pK^-)}$$

- The limits (90% CL) on R are at the level $10^{-2} - 10^{-3}$
The Puzzling States X → J/ψΦ

- Reminder: the X(3872) revolution
- The most studied exotic state
 - LHCb: J^P_C = 1++
 - X is most probably a mixture of χ_{c1}(2P) and of DD* molecule

- The X(4140) - evidence for a narrow near threshold structure in B⁺ → (J/ψ φ) K⁺ decays: CDF, D0, CMS
- The X(4274) – the second relatively narrow [J/ψ φ] state – evidence from CDF and CMS
- Negative results from other experiments (B-factories)
LHCb: the first amplitude analysis of $B^+ \rightarrow [J/\psi \phi] K^+$ decays

- 4289±151 candidates; nearly background free

- 6D phase space composed of $m(\phi K)$, helicity angles and $\Delta \phi$ angles

- The amplitude analysis aimed to resolve $K^* \rightarrow K \phi$ from the potential $X \rightarrow J/\psi \phi$ resonances

- The model with excited K^*s ($\rightarrow K\phi$) does not describe the data

- Good description upon inclusion of four broad exotic resonances

- The $X(4140)$ width is substantially larger than previously determined (average of other meas.: 15.7±6.3 MeV)

- $X(4140)$ and $X(4274)$ – J^{PC} incompatible with cusps and molecular bound states - possible interpretation as tetraquarks $c\bar{c}s\bar{s}$ (no light valence quarks) or $\chi_{c1}(3P)$

- $X(4500)$ and $X(4700)$ – $D_s^{(*)+} D_s^{(*)-}$ state or $\chi_{c1}(4P), \chi_{c1}(5P)$

Reflections from K^* states

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$X(4140)$</td>
<td>8.4</td>
<td>$4146.5 \pm 4.5^{+4.6}_{-2.8}$</td>
<td>$83 \pm 21^{+21}_{-14}$</td>
<td>1^{++}</td>
</tr>
<tr>
<td>$X(4274)$</td>
<td>6.0</td>
<td>$4273.3 \pm 8.3^{+17.2}_{-3.6}$</td>
<td>$56 \pm 11^{+8}_{-8}$</td>
<td>1^{++}</td>
</tr>
<tr>
<td>$X(4500)$</td>
<td>6.1</td>
<td>$4506 \pm 11^{+12}_{-15}$</td>
<td>$92 \pm 21^{+21}_{-20}$</td>
<td>0^{++}</td>
</tr>
<tr>
<td>$X(4700)$</td>
<td>5.6</td>
<td>$4704 \pm 10^{+14}_{-24}$</td>
<td>$120 \pm 31^{+33}_{-20}$</td>
<td>0^{++}</td>
</tr>
</tbody>
</table>

Data and fits

- Run 1 3 fb$^{-1}$

References

- PRL 118 (2017) 02203
- PR D95 (2017) 012002
Controversy About the Tetraquark X(5568)

- **D0 (2016):** reports a narrow structure X(5568) in the $B_s^0 \pi^+$ spectrum
 \[
 \vec{X}(5568) \rightarrow B_s^0 \pi^+ \\
 B_s^0 \rightarrow J/\psi \phi
 \]
 \[
 \rho_X = \frac{\sigma(pp \rightarrow X + \text{anything}) \times B(X \rightarrow B_s^0 \pi^+)}{\sigma(pp \rightarrow B_s^0 + \text{anything})} = (8.6 \pm 1.9 \pm 1.4) \%
 \]
 (5.1 σ)

 A system (tetraquark or molecule) containing valence (anti)quarks with four different flavours (b,s,d,u)?

- **LHCb (2016):** 20x more D_s than D0 collab.
 - lack of observation of any X(5568)-like signal

- **Not seen by CDF (27 Dec. 2017):**

- **Seen again by D0 (29 Dec. 2017):**
 \[
 \vec{X}(5568) \rightarrow B_s^0 \pi^+ \\
 B_s^0 \rightarrow \mu^+ D_s^\pm X, D_s^\pm \rightarrow \psi \pi^\pm
 \]

\[
\rho_X < 2 \% \quad (95 \% C.L.)
\]

- Similar negative result from CMS:
 - CMS-PAS-BPH-16-002 (2016)

\[
m = 5566.9^{+3.2+0.6}_{-3.1-1.2} \text{ MeV} \quad (6.7 \sigma)
\]

\[
\Gamma = 18.6^{+7.9+3.5}_{-6.1-3.8} \text{ MeV}
\]
Charged Exotic State $Z(4430)^-$

- **Belle (2008):** evidence for $Z(4430)^-$ in $\psi'\pi$ mass distribution ($B^0 \rightarrow \psi'(2S)\pi^- K^+$ decays)
- **LHCb (2014):** tenfold increase in signal yield (25176+174 decays); Run 3fb$^{-1}$

4D amplitude analysis:

$Z(4430)^-$

- $m(Z(4430)^-) = 4475 \pm 7^{+15}_{-25}$ MeV
- $\Gamma(Z(4430)^-) = 172 \pm 13^{+37}_{-34}$ MeV

$J^P = 1^+$ assignment established relative to:

<table>
<thead>
<tr>
<th>J^P</th>
<th>0$^-$</th>
<th>1$^-$</th>
<th>2$^+$</th>
<th>2$^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>sign. $</td>
<td>\sigma</td>
<td>$</td>
<td>9.7</td>
<td>15.8</td>
</tr>
</tbody>
</table>

Positive parity \rightarrow hypothesis of threshold effect $\bar{D}^*(2007)D_1(2420)$ and $\bar{D}^*(2007)D_2^*(2460)$ ruled out

Model independent approach:

- The $K\pi$ angular distributions are extracted from data with Legendre polynomial moments and projected as reflection of the $m(\psi'\pi)$ spectrum
- The $K\pi$ reflections with $J(K^*) \leq 2$ excluded (>8σ)

- The most plausible interpretation of $Z(4430)$: a tetraquark; the minimal quark content $c\bar{c}d\bar{u}$
Conclusions

➢ The renaissance of heavy flavour spectroscopy in recent 15 years:

• Observation of numerous new states: many of them exotic-like

• A vivid field of research with strong liaisons between theory and experiment

➢ LHCb has recently provided valuable contributions to heavy flavour spectroscopy of exotic states:

 ▪ Observation of hidden-charm pentaquarks P_c; searches for b-flavoured states P_b
 ▪ Observation of candidates for tetraquark $c\bar{c}s\bar{s}$ states in the $J/\psi\phi$ final state
 ▪ Non-confirmation of a tetraquark $X(5568)$
 ▪ Confirmation and extensive studies of $Z(4430)^-$ in $\psi'\pi$ mass distribution

➢ More precise spectroscopic measurements from the LHCb experiment and, hopefully, some discoveries should follow with the analysis of Run 2 data

➢ LHC and LHCb upgrade: 50 fb^{-1} of integrated luminosity expected by 2030....