

kvi - center for advanced radiation technology

New XYZ results from BESIII

Myroslav Kavatsyuk

KVI – Center for Advanced Radiation Technology, University of Groningen

For the BESIII collaboration

Hadron Landscape

Hadron-physics challenges:

- Understanding of established states
- Nature of exotic states

To complete the Hadron-physics puzzle we have to:

- find pieces (discover states, identify symmetry properties);
- understand relation between the pieces (study transitions)

between the states).

2

Discoveries Come Unexpected...

Initial idea: Try to populate directly one of the known, but not well understood state **Y(4260)**.

Realization: Tune e⁺e⁻ BEPCII collider to 4260 MeV ...

... and measure decay products with the BESIII detector...

... check if there are transitions to known states (e.g. J/Ψ)...

... direct transitions or via intermediate resonances...

States can be directly populated in annihilation e⁺e⁻

BESIII Detector

1.0 Tesla super-conducting magnet

e⁺

Be beam pipe

B€SⅢ

4

Muon counters:

9/8 RPC layers (barrel/endcaps) Cut-off momentum: 0.4 GeV/c

CsI(TI) ElectroMagnetic Calorimeter: σ_{E}/E (at 1 GeV): 2.5 % $\sigma_{z,\phi}$ (at 1 GeV): 6 mm

Time Of Flight (TOF): σ_{T} : 100/110 ps (barrel/endcaps)

Drift chambers (MDC): σ_p/p (at 1 GeV): 0.5 % $\sigma_{dE/dx}$: 6 %

e

M. Ablikim et al., Nucl. Instr. and Meth. A 614 (2010) 345–399

Discovered Z_c states at BESIII

B€SⅢ

Linking exotics together: transition between Y(4260) and X(3872)

 $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma J/\Psi \pi^+\pi^-$

- The X(3872) signal is clearly observed: significance 6.3σ
- Cross-section hints radiative transition between Y(4260) and X(3872)
- Existence of transitions between Y(4260) X(3872) and Z_c states suggest that there might be some commonality in the nature of these three different states
- Assuming that measured transition is from Y(4260):

 $\frac{B(Y(4260) \to \gamma X(3872))}{B(Y(4260) \to \pi^+ \pi^- J/\psi)} \sim 0.1$

Z_c(3900) Quantum Numbers

 $e^+e^- → (D^*D^*)^{\pm}\pi^{\mp}$ √s = 4.23 and 4.26 GeV

Fits to $|\cos\theta|$ distributions for $\pi^+D^0D^0$ – tagged events

- M = $(3881.7 \pm 1.6 \pm 1.6)$ MeV/c²
- Γ = (26.6±2.0±2.1) MeV [Phys. Rev. D 92, 092006 (2015)]

Reconstruction method:

Complete reconstruction of decay

Spin-parity of Z_c(3900) 1⁺

Z_c(3900) Quantum Numbers (PWA)

B€SⅢ

Complete PWA of Zc(3900) in $e^+e^- \to \pi^+\pi^- J/\psi~$ at $_{\rm \sqrt{s}=4.23~GeV}$ and $_{\rm \sqrt{s}=4.26~GeV}$

Significance of 1⁺ hypothesis over other quantum numbers

Hypothesis	$\Delta(-2\ln L)$	significance
1^+ over 0^-	94.0	12.0σ
1^+ over 1^-	158.3	16.3σ
1^+ over 2^-	151.9	15.9σ
1^+ over 2^+	96.0	12.1σ

Polar and helicity angle distributions in

Spin-parity of Z_c(3900) 1⁺

Evidence of $Z_c(3900)^{\pm} \rightarrow \rho^{\pm}\eta_c$

• Strong evidence of $e^+e^- \rightarrow \pi Z_c, Z_c \rightarrow \rho \eta_c$ at 4.23 GeV (significance 4.3 σ)

₿€SШ

 Transitions via Z(4020) are not observed

 $\begin{array}{l} \mbox{Measured R}_{Z(3900)} \mbox{ ratio} \\ \mbox{is a sensitive test:} \\ \mbox{} \mbox{} \\ \mbox{} \\ \mbox{} \\ \mbox{} \\ \mbox{} \mbox{} \\ \mbox{} \\$

- lower than type-I tetra-quarks model (two orders)
- larger than type-II tetra-quarks model calculation (one order)
- larger than the molecule model calculation(one to two orders)

preliminary

Discoveries Come Unexpected...

Direct formation of 1⁻⁻ states allows us to study in details Y states

In the process $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ we discovered exotic matter...

Will the energy scan of the Y state reveal new structures?

States can be directly populated in annihilation e⁺e⁻

Simultaneous fit of two independent data sets ("XYZ" and "Scan") revealed two resonances:

- Known Y(4260)?, M = (4222.0 \pm 3.1 \pm 1.4) MeV/c² Γ = (44.1 \pm 4.3 \pm 2.0) MeV
- Y(4360)? $M = (4320.0\pm10.4\pm7) \text{ MeV/c}^2 \Gamma = (101.4\pm25\pm10) \text{ MeV}$
- Improved measurements for Y(4260)?
- Y(4360) observed for the first time in $\pi^{+}\pi^{-}J/\Psi$, seen by Belle and BABAR in $\pi^{+}\pi^{-}\Psi$ (2S)
- No hints for Y(4008) seen by Belle

Scan of Y states

 $e^+e^- o \pi^+\pi^-h_c$

[Phys. Rev. Lett. 118, 092002 (2017)]

Simultaneous fit of two independent data sets ("XYZ" and "Scan") revealed two resonances:

- Y(4220): M = (4218.0±5±0.9) MeV/c² Γ = (66±12±0.4) MeV
- Y(4390): M = (4391.5±6.8±1.0) MeV/c² Γ = (139.5±20±0.6) MeV
- The parameters of these structures are different from those of Y(4260), Y(4360) and Ψ (4415)
- Y (4220) consistent with the resonance observed in $e^+e^- \rightarrow \omega \chi_{c0}$

Scan of Y states $e^+e^- ightarrow \pi^+ D^0 D^{*-}$

Fit to the dressed cross sections

Fit reveals two resonances (significance $>10\sigma$):

- Y(4220): M = (4224.8±5.6±4) MeV/c² Γ = (72.3±9.1±0.9) MeV
- Y(4390): M = (4400.1±9.3±2.1) MeV/c² Γ = (181.7±16.9±7.4) MeV
- The parameters of observed structures consistent with ones seen in
 - Y(4220): π⁺π⁻h_c, π⁺π⁻J/Ψ, ωχ_{c0}
 - Y(4390): π⁺π⁻h_c
- The mass of Y(4220) is lower by about 30 MeV/c² than that of the Y(4260), but consistent with the prediction of DD₁ molecule interpretation within errors
- Assuming that Y(4220) is the same resonance as the Y(4260) the $\pi^+D_0D^{*-}$ could be the dominant decay channel of the Y (4260) 13

Scan of Y states $e^+e^- o \pi^+\pi^-\psi(3686)$

Assuming 1⁺ charmonium-like state fit yields:

- M = (4032.1 ± 2.4) MeV/c²
- Γ = (26.1 ± 5.3) MeV

[Phys. Rev. D 96, 032004 (2017)]

A prominent narrow structure observed in $\pi\Psi(3686)$ mass spectrum for $\sqrt{s}=4.416$ GeV

Does the same structure exists in the neutral channel?

- The measured Born cross sections: ~half of those for $\pi^{\pm}\Psi(3686)$ (as expected)
- The Dalitz distributions of π⁰π⁰Ψ(3686) are consistent with those in π⁺π⁻Ψ(3686) for all energy points
- Observed structure at M = (4038.7 ± 6.5) MeV/c² confirms one seen in the charged mode:
 - the fit curve does not match the data perfectly
 - A future larger statistics sample of data could lead to a better understanding of the structure.

Scan of Y states

$e^+e^- o p ar{p} \pi^0$

[Phys. Lett. B 771, 45-51 (2017)]

Searches for new decay modes of the Y(4260) may shed light on its nature

Hybrid model predicts a sizeable coupling between the Y(4260) and charmless decays.

Not observed: upper limit for Born cross section 0.01 pb at 90% C.L.

Scan of Y states

$e^+e^- \to K\bar{K}J/\psi$

[Phys. Rev. D 97, 071101 (2018)]

Searches for new decay modes of the Y states

- So far no conclusive evidence for a Y(4260) decay (from cross-section measurements)
- Few of the cross section measurements hint a more complex pattern than just the production of a Y (4260).

Cross-section ratio for two independent data sets

- σ_E(K⁺K⁻ J/Ψ)/σ_E(π⁺π⁻ J/Ψ)
 inconsistent with flat ratio (3.5σ significance) at 4.226 4.358 GeV
 Y(4260) as defined by π⁺π⁻J/Ψ inconsistent with K⁺K⁻ J/Ψ
- More complex structure observed at ~4.6 GeV

Hadron Landscape

Do exotic states exist in strangeness sector?

Y(2175) - strange tetraquark?

₿€SШ

Y(2175):

- behaves similarly to the Y(4260) (charm sector) and the Y(10860) (bottom sector)
- is regarded as candidate for a tetraquark state a strangeonium hybrid state or a conventional ss state
- was observed in direct e⁺e⁻ annihilations and in J/ $\Psi \rightarrow \eta Y(2175)$
- has inconsistencies in previous mass and width measurements

Do we see Y(2175) at BESIII?

Y(2175) @ BESIII

[arXiv:1709.04323]

e⁺e⁻ → ηY(2175) @ √S>3.7 GeV

 $Y(2175) - observed at all energy points in <math>Y(2175) \rightarrow \phi f_0(980)$ decay:

- M = $(2135 \pm 8 \pm 9) \text{ MeV/c}^2$
- Γ = (104 ± 24 ± 12) MeV

 – consistent with previous measurements, and the width tends to be larger but similar with the results of Belle and BESIII

Y(2175) @ BESIII

[arXiv:1709.04323]

Cross section varies with c.m. energy as:

 $1/s^n$ with $n = 2.65 \pm 0.86$

- can be compared with measurements of other vector-pseudoscalar final states and theoretical calculations
- deviation from the behavior of final states – may reveal the nature
- no obvious signal of a potential charged strangeonium-like state $Z_{_{S}} \to \phi \pi$ is observed

Search for Z_s state

Search for analogous to Z_c structure seen in Y(4260) $\rightarrow J/\Psi \pi^+ \pi^-$

$e^+e^- \rightarrow \phi \pi^+\pi^-$ @ $\sqrt{S}=2.125 \text{ GeV}$

[arXiv:1801.10384]

No significant signal is observed...

Summary

- BESIII collaboration performs systematic studies of XYZ states in charm and strange sectors to reveal their nature
- Several Z_c states are established in open-charm region
 - Decay rates to open- and hidden-charm states are measured and are not consistent with conventional open-charm mesons (sensitive probe to discriminate between theoretical models)
- Hadron and radiative transitions are observed between Y and Z, and Y and X states, respectively
- Measurement of Born cross-section for different channels in the region between 4 and 4.6 GeV reveal complex structures and new Y states

BESIII at BEPC-II

Hadron Matter

Colour-neutral states allowed by QCD

BESI

XYZ States, Nomenclature

Conventional quarkonium (cc̄), meson molecule (cq̄ + c̄q), tetraquark (cc̄qq̄), hybrid state (cc̄ + g ...) et.al.

More Mysteries of Z_c(3900)

√s = 4.23 GeV

Search for $\textbf{Z}_{c}(3900) \rightarrow \pi^{\pm} \omega$

There are three important decay modes for charmonium-like states:

- the fall-apart to open charm mesons;
- the cascade to hidden charm mesons;
- decays to light hadrons via intermediate gluons.

Since $Z_c(3900)$ decays to $J/\Psi\pi$, a sizeable annihilation rate could be expected with $\bar{c}c$ in S – wave (as for χ_c)

No significant signal observed: $\Gamma(Z_c(3900) \rightarrow \omega \pi) < 0.2\% \Gamma(Z_c(3900))$

Annihilation to cc is suppressed?

[Phys. Rev. D 92, 032009 (2015)]

Y states: $e^+e^- \rightarrow \eta J/\Psi$

Energy-dependent cross-section compared to Belle data obtained in: $\eta J/\Psi$ and $\pi^{+}\pi^{-}J/\Psi$

- Agree with previous results with improved precision.
- Non-trivial structure around 4.2 GeV: This could indicate the existence of a rich spectrum of Y states in this energy region with different coupling strengths to the various decay modes.

[Phys. Rev. D 91, 112005 (2015)]

Scan of Y states

 $e^+e^- \rightarrow \omega \chi_{c0}$

[Phys. Rev. Lett. 114, 092003 (2015)]

100 80 🔶 Data $σ(e^+e^- → ω\chi_{c_0})$ (pb) Resonance 60 ---- Phase Space 40 20 0 -20 -40[□] 4.15 4.35 4.2 4.25 4.3 4.4 4.45 4.5 \sqrt{s} (GeV)

Energy-dependent cross-section

Resonance structure is observed (significance > 9σ)! Assuming single BW:

• $M = (4230\pm8\pm6) \text{ MeV/c}^2$

- Inconsistent with Y(4260) from $\pi\pi J/\Psi$
- No significant signals for $e^+e^- \to \omega \chi_{\text{C1,2}}$

The Z_c(3900)[±]

Discovered by BESIII, promptly confirmed by:

Belle: [Phys. Rev. Lett. 110, 252002 (2013)] M = $3894.5 \pm 6.6 \pm 4.5 \text{ MeV/c}^2$ $\Gamma = 63 \pm 24 \pm 26 \text{ MeV}$

CLEO-c data: [Phys. Lett. B 727, 366 (2013)]

The Z_c(3900)^o

Structure is seen in $\pi^0 J/\Psi$ (10 σ significance):

- M = $(3894.8\pm2.3\pm3.2)$ MeV/c²
- Γ = (29±8.2±8.2) MeV
 [Phys. Rev. Lett. 115, 112003 (2015)]

Z_c(3900) – four-quark isospin triplet?

B€S∏

Z_c(3900) Decay Rates

M = (3883.9±1.5±4.2) MeV/c²
Γ = (24.8±3.3±11) MeV
[Phys. Rev. Lett. 112, 022001 (2014)]

Reconstruction method:

- Reconstruct $\pi^{\scriptscriptstyle +}$ and $D^{\scriptscriptstyle 0} \to K^{\scriptscriptstyle -} \pi^{\scriptscriptstyle +}$
- Infer D^{*-}
- Analyse as well π⁺D⁻D^{*0}
- Is found structure (referred as Z_c(3885)) different decay mode of the Z_c(3900)?
 - Z_c(3900)[±] properties:
 - M = (3899.0±3.6±4.9) MeV/c²
 - Γ = (46±10±20) MeV
- Assuming it is, the partial width ratio: $\Gamma(Z_c \rightarrow DD^*)/\Gamma(Z_c \rightarrow \pi J/\Psi) = 6.2\pm1.1\pm2.7$

Tetraquark model disfavoured ?