

Effect of the QCD equation of state and strange hadronic resonances on multiparticle correlations in heavy ion collisions (nucl-th:1711.05207)

VALENTINA MANTOVANI SARTI,

P.ALBA, J. NORONHA, J. NORONHA-HOSTLER,

P.PAROTTO, I. PORTILLO-VAZQUEZ AND C.RATTI

24.05.2018 WPCF 2018-Krakow

•Why do we need additional resonances

- Inclusion of additional states in the hadronic spectrum
- Lattice QCD based Equation of State (EoS)
- •Results:
 - Particle spectra and mean p_t
 - η /s and flow harmonics: comparison with STAR results in QM18

Conclusions

Heavy-ion collisions evolution

24.05.2018 WPCF 2018-Krakow

Why do we need additional states?

Bazazov et al. PRL 113(2014) QM: Capstick, Isgur PRD (1986 Baryon-Strangeness correlator

- **QM-HRG** improves the agreement with LQCD data
- QM predicts <u>not-yet-detected</u> <u>strange states</u> ⇒ overestimate other strangeness related observables as X₄/X₂

ADDING *- STATES FROM UP-TO-DATE PDG LIST?**

M Additional states from up-to-date PDG list

24.05.2018 WPCF 2018-Krakow

Sensitive to the strangeness content

24.05.2018 WPCF 2018-Krakow

III Baryon-strangeness fluctuations from LQCD

$$\left(\frac{\mu_{S}}{\mu_{B}}\right)_{LO} = -\frac{\chi_{11}^{BS}}{\chi_{2}^{S}} - \frac{\chi_{11}^{QS}}{\chi_{2}^{S}}\frac{\mu_{Q}}{\mu_{B}}.$$

$$\frac{\chi_4^S}{\chi_2^S} \propto |S|^2$$

P. Alba PRD96 (2017)

24.05.2018 WPCF 2018-Krakow

Valentina Mantovani Sarti (TUM Physics Department – E62)

IIII Lattice QCD based Equation of State

PDG16+: Chin. Phys. C40 (2016)

III Hydrodynamical evolution in a nutshell

Results

24.05.2018 WPCF 2018-Krakow

Valentina Mantovani Sarti (TUM Physics Department – E62)

Particle spectra: additional states & charm quarks

- Inclusion of additional states \Rightarrow better agreement for **p** and **K** at high p_t
- Inclusion of charm quarks \Rightarrow less high p_t particles

PDG05/S95n-v1:Huovinen et al. Nucl. Phys., A837:26–53, 2010

pt <pt ditional states & charm quarks</pre>

- Inclusion of extra resonances \Rightarrow larger <p_t>
- Inclusion of charm quarks ⇒ smaller <pt>up to intermediate
 centralities

Particle spectra and <pt>: *-** states effect

• increase of \simeq **5-15%** in p_t spectra

• up to \simeq 7% in <p_t>

PHENIX Collaboration, PRC69 (2004)

How is η /s affected by the new EoS?

- η/s from fit to STAR 200 GeV (nucl-ex: 1701.06496) and ALICE RUN2 5.02 TeV (PRL116,2016)
- LHC energies more sensitive to different EoS

T How is η /s affected by the new EoS?

EoS	Au-Au 200 GeV	Pb-Pb 5.02TGeV
PDG05/S95n – v1 [11]	0.05	0.025
PDG16 + /2 + 1 [WB]	0.05	0.047
PDG16 + /2 + 1 + 1 [WB]	0.05	0.04

- No EoS dependence at RHIC⇒agreement with Bayesian analysis (PRC94, 2016)
- LHC energies \Rightarrow decrease of 50% for old EoS

 \Rightarrow charm contribution leads to a smaller η/s

higher temperatures probed at <u>LHC</u> run 2 (up to T≃600 <u>MeV</u>)
 ⇒ splitting between the 2+1 and 2+1+1 EoS

TIP Shear viscosity and flow harmonics: *-** states

TIP Flow harmonics: comparison to STAR results

- Agreement with v₂{2},v₂{4} at 200 GeV
- Slightly underestimating the ratio v₂{4}/v₂{2}⇒nonlinear effects? (BES)

QM18 talk by Niseem Magdy-STAR Coll.

TIT Flow harmonics: comparison to STAR results

Ratio v₃{2}/v₃{4} mildly affected by medium and does not depend on the colliding system ⇒ probe to investigate properties of initial state

QM18 talk by Niseem Magdy-STAR Coll.

MS cumulants: comparison to STAR results

$$NSC(m,n) = \frac{\langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle}{\langle v_m^2 \rangle \langle v_n^2 \rangle}$$

NSC ⇒ insight into medium and initial state
 NSC(2,3) independent of viscous effects
 NSC(4,2) sensitive to viscosity

QM18 talk by Niseem Magdy-STAR Coll.

Conclusions & Outlooks (for more details: [nucl-th]:1711.05207)

- •EoS based on additional strange hadronic states (PDG2016+) and state-of-the-art LQCD calculations for 2+1/2+1+1 quark flavors \Rightarrow partial pressures analysis
- •inclusion of <u>additional *-** states</u>:
 - increase the agreement with LQCD data up T≃145 MeV, close to the crossover region
 - enhance the production of particles at higher p_t and leads to a higher <p_t>
- •Shear viscosity and new EoS:
 - 50% increase wrt to old EoS at LHC energies
 - at LHC run2 energies sensitive to EoS ⇒ 15% difference in 2+1 and 2+1+1 EoS results which should increase at higher temperatures
- •Flow harmonics and NSC at STAR 200 GeV:
 - Nice agreement with recent results presented at QM18 by STAR collaboration
- •<u>Outlooks</u>: thermal fit analysis on STAR and LHC yields and ratios to study QCD flavour hierarchy and transport coefficients near phase transition (in preparation)

•Thermal fit analysis based on this new-up-to-date spectrum for particle yields at RHIC and LHC data (in preparation)

BACKUP SLIDES

24.05.2018 WPCF 2018-Krakow

Valentina Mantovani Sarti (TUM Physics Department – E62)

Building the EoS: HRG model at low T

(J.Norohna-Hostler slides)

III Building the EoS: HRG model at low T

Partial pressures from LQCD

• Sensitive to the strangeness content

$$\begin{array}{lll} P_{S}(\hat{\mu}_{B},\hat{\mu}_{S}) &=& P_{0|1|}\cosh(\hat{\mu}_{S}) \\ &+& P_{1|1|}\cosh(\hat{\mu}_{B}-\hat{\mu}_{S}) \\ &+& P_{1|2|}\cosh(\hat{\mu}_{B}-2\hat{\mu}_{S}) \\ &+& P_{1|3|}\cosh(\hat{\mu}_{B}-3\hat{\mu}_{S}) \end{array}$$

$$P_{0|1|} = \chi_2^S - \chi_{22}^{BS}$$

$$P_{1|1|} = \frac{1}{2} \left(\chi_4^S - \chi_2^S + 5\chi_{13}^{BS} + 7\chi_{22}^{BS} \right)$$

$$P_{1|2|} = -\frac{1}{4} \left(\chi_4^S - \chi_2^S + 4\chi_{13}^{BS} + 4\chi_{22}^{BS} \right)$$

$$P_{1|3|} = \frac{1}{18} \left(\chi_4^S - \chi_2^S + 3\chi_{13}^{BS} + 3\chi_{22}^{BS} \right)$$

P. Alba PRD96 (2017)

TIP Hydrodynamical evolution

- E-b-E v-USPHydro + TRENTO I.C. +T_{kin}=T_{chem}
- On/off hydro chosen to be consistent as possible with LQCD
- τ₀ = 0.6 fm, T_{sw} = 150 MeV

(J.Norohna-Hostler slides)

Partial pressures from LQCD: Kaons

TIT Partial pressures from LQCD: N states and Hyperons

TIII Shear viscosity and hadronic spectrum

Master Stud. J.Rose (Houston Univ.)

