The light scalar κ: its nature and its role at nonzero temperature

Francesco Giacosa
UJK Kielce (Poland) & Goethe U Frankfurt (Germany)

in collaboration with
Milena Piotrowska (UJK), Thomas Wolkansowski (Goethe U, Ffm)
Wojciech Broniowski (UJK +IFJ), Viktor Begun (ex UJK, now WUT)

Talk prepared for:
WPCF 2018
22-26/5/2018, IFJ PAN, Krakow Poland
Outline

From quarks and gluons to hadrons
A simple example: \(K^*(892) \)
\(K_0^*(1430) \) and the light \(k = K_0^*(800) \) as a companion pole
(Same mechanism for other states)
The \(k \) at nonzero \(T \) in thermal models
Summary
Francesco Giacosa

From QCD Lagrangian to baryons and mesons

Born Giuseppe Lodovico Lagrangia
 25 January 1736
 Turin

Died 10 April 1813 (aged 77)
 Paris

Francesco Giacosa
The QCD Lagrangian

Quark: u,d,s and c,b,t \(R,G,B \)

$$q_i = \begin{pmatrix} q_i^R \\ q_i^G \\ q_i^B \end{pmatrix}; \quad i = u,d,s,...$$

8 type of gluons \((R\overline{G}, B\overline{G},...\))

$$\mathcal{L}_{QCD} = \sum_{i=1}^{N_f} \overline{q}_i (i\gamma^\mu D_\mu - m_i)q_i - \frac{1}{4} G_{\mu\nu}^a G^{a,\mu\nu}$$

$$A_\mu^a; \quad a = 1,..., 8$$

Francesco Giacosa
Hadrons

The QCD Lagrangian contains ‘colored’ quarks and gluons. However, no ‘colored’ state has been seen.

Confinement: physical states are white and are called hadrons.

Hadrons can be:

Mesons: bosonic hadrons

Baryons: fermionic hadrons

A meson is not necessarily a quark-antiquark state.
A quark-antiquark state is a conventional meson.

Francesco Giacosa
Conventional mesons

- Quark: u, d, s, ... R, G, B

- $|\text{color}| = \sqrt{1/3(\bar{R}R + \bar{G}G + \bar{B}B)}$
- With $q\bar{q}$ states we can understand a lot of QCD, but not everything.
Example of conventional quark-antiquark states: the $K^*(892)$ and the K mesons

In the vector channel: $K^*(892)$ (brother of the rho meson)

In the pseudoscalar channel: positively charged kaon.

In the scalar channel, the situation is more complicated: scalar kaons $K^0*(1430)$ and $K^0*(800)$ (see later).
Classification of some conventional light mesons

<table>
<thead>
<tr>
<th>State</th>
<th>S</th>
<th>L</th>
<th>J</th>
<th>P</th>
<th>C</th>
<th>J^{PC}</th>
<th>Mesons</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1S_0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>+</td>
<td>0^{-+}</td>
<td>π,η,η'</td>
<td>K</td>
</tr>
<tr>
<td>3S_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1^{--}</td>
<td>ρ,ω,ϕ</td>
<td>K^*</td>
</tr>
<tr>
<td>1P_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>-</td>
<td>1^{-+}</td>
<td>b_1,h_1,h_1'</td>
<td>K_1</td>
</tr>
<tr>
<td>3P_0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0^{++}</td>
<td>a_0,f_0,f_0'</td>
<td>K_0^*</td>
</tr>
<tr>
<td>3P_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>+</td>
<td>1^{++}</td>
<td>a_1,f_1,f_1'</td>
<td>K_1</td>
</tr>
<tr>
<td>3P_2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>+</td>
<td>+</td>
<td>2^{++}</td>
<td>a_2,f_2,f_2'</td>
<td>K_2^*</td>
</tr>
</tbody>
</table>

- Not all quantum numbers are permitted for a quark - antiquark states.

\[J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}, \ldots \]

are exotic quantum numbers.
Non-conventional mesons: theoretical expectations

1) Glueballs

Compact diquark-antidiquark states

2) Hybrids

3) Four-quark states

Molecular states (a type of dynamical generation)

Companion poles (another type of dynamical generation)
Companion poles

• In the following papers the idea of companion poles was discussed.

• In particular, the states $K_0^*(892)$ and $a_0(980)$ represents a nice example (see later on).

Related ideas studied by E. Oset, J. Pelaez, G. Rupp, Van Beveren,...
Loops in a simple ‘boring’ example: $K^*(892)$

based on M. Soltysiak, T. Wolkanowski and F. G.,
Large-Nc pole trajectories of the vector kaon $K^*(892)$
and of the scalar kaons $K^0(800)$ and $K^0(1430)$,
[arXiv:1604.01636 [hep-ph]].
K*(892) from PDG

J^P = \frac{1}{2}(1^-)

- **K*(892)^±** hadroproduced mass $m = 891.66 \pm 0.26$ MeV
- **K*(892)^±** in τ decays mass $m = 895.5 \pm 0.8$ MeV
- **K*(892)^0** mass $m = 895.81 \pm 0.19$ MeV $(S = 1.4)$
- **K*(892)^±** hadroproduced full width $\Gamma = 50.8 \pm 0.9$ MeV
- **K*(892)^±** in τ decays full width $\Gamma = 46.2 \pm 1.3$ MeV
- **K*(892)^0** full width $\Gamma = 47.4 \pm 0.6$ MeV $(S = 2.2)$

K*(892) Decay Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Γ_i/Γ</th>
<th>Confidence Level</th>
<th>p (MeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K^π</td>
<td>~ 100</td>
<td>%</td>
<td>289</td>
</tr>
<tr>
<td>$K^0\gamma$</td>
<td>$(2.46 \pm 0.21) \times 10^{-3}$</td>
<td></td>
<td>307</td>
</tr>
<tr>
<td>$K^\pm\gamma$</td>
<td>$(9.9 \pm 0.9) \times 10^{-4}$</td>
<td></td>
<td>309</td>
</tr>
<tr>
<td>$K^\pi\pi$</td>
<td>$< 7 \times 10^{-4}$</td>
<td>95%</td>
<td>223</td>
</tr>
</tbody>
</table>
A simple model for $K^*(892)$

- Lagrangian:

$$\mathcal{L}_v = cK^*(892)_{\mu} \partial^\mu K^- \pi^0 + \ldots$$

- Decay width:

$$\Gamma_{K^*}(m) = 3 \frac{|\vec{k}_1|}{8\pi m^2} \frac{e^2}{3} \left[-M_{\pi}^2 + \frac{(m^2 + M_{\pi}^2 - M_{K^*}^2)^2}{4m^2} \right] F_{\Lambda}(m)$$

where:

$$F_{\Lambda}(m) = e^{-2|\vec{k}_1|^2/\Lambda^2}$$

Form factor: it can be included in the Lagrangian by making it nonlocal. Even if it cuts the three-momentum, a covariant generalization is possible.

Francesco Giacosa
Spectral function $d_{K^*}(m)dm$ determines the probability that $K^*(892)$ has a mass between m and $m + dm$.

- Spectral function:
 $$d_{K^*}(m) = \frac{2m}{\pi} |\text{Im} \Delta_{K^*}(p^2 = m^2)|$$

- Normalization condition:
 $$\int_0^\infty d_{K^*}(m)dm = 1.$$
Large-Nc study of $K^*(892)$

$c \rightarrow \sqrt{\lambda}c, \quad \lambda \equiv \frac{3}{N_c} \quad N_c$ is the number of colors

For large-N_c the spectral function tends to a Dirac-δ, as expected.
Pole position of $K^*(892)$

$K^*(892) : 0.89 - 0.028i \ (GeV)$

For large N_c the pole tends to the real axis.

- It behaves like a Breit-Wigner resonance.
- one peak — one single pole.
- Large N_c in agreement with $q\bar{q}$.
Narrow state, nice corresponce
K0*(800) as a companion pole of K0*(1430)

based on M. Soltysiak, T. Wolskanowski and F. G.,
K0*(800) as a companion pole of K0*(1430),'
$K_0^*(1430)$ and $K_0^*(800)$ from PDG

$K_0^*(1430)$

$\quad I(J^P) = \frac{1}{2}(0^+)$

Mass $m = 1425 \pm 50$ MeV
Full width $\Gamma = 270 \pm 80$ MeV

$K_0^*(1430)$ DECAY MODES

<table>
<thead>
<tr>
<th>Decay Mode</th>
<th>Fraction (Γ_i/Γ)</th>
<th>p (MeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K\pi$</td>
<td>(93 ± 10)%</td>
<td>619</td>
</tr>
<tr>
<td>$K\eta$</td>
<td>(8.6 ± 2.7)%</td>
<td>486</td>
</tr>
</tbody>
</table>

$K_0^*(800)$

$\quad I(J^P) = \frac{1}{2}(0^+)$

OMITTED FROM SUMMARY TABLE

Needs confirmation. See the mini-review on scalar mesons under $f_0(500)$ (see the index for the page number).

$K_0^*(800)$ MASS

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>682 ± 29</td>
<td>OUR AVERAGE</td>
<td></td>
<td></td>
<td>Error includes scale factor of 2.4. See the ideogram below.</td>
</tr>
</tbody>
</table>

Francesco Giacosa
Simple Lagrangian for $K^0\ast(1430)$

- Lagrangian:
 \[\mathcal{L}_{int} = aK_0^* K^- \pi^0 + bK_0^* \partial_\mu K^- \partial^\mu \pi^0 + \ldots \]

- Decay width:
 \[\Gamma_{K_0^*}(m) = 3 \frac{|k_1|}{8\pi m^2} \left[a - \frac{b}{2} \frac{m^2 - M_{K}^2 - M_{\pi}^2}{2} \right]^2 F_\Lambda(m) \]

where:

Francesco Giacosa
Propagator of $K_0^*(1430)$

- Propagator of the scalar kaonic field:
 \[
 \Delta_{K_0^*}(p^2 = m^2) = \frac{1}{m^2 - M_0^2 + \Pi(m^2) + i\varepsilon}
 \]
 where M_0 is the bare mass of the scalar.

- Spectral function:
 \[
 d_{K_0^*}(m) = \frac{2m}{\pi} |\text{Im} \Delta_{K_0^*}(p^2 = m^2)|
 \]
 \[
 \int_0^\infty d_{K_0^*}(m)dm = 1.
 \]

According to the optical theorem, $\text{Im} \Pi(m) = m\Gamma_{K_0^*}(m)$.
$$\delta(m) = \frac{1}{2} \arccos \left[1 - \pi \Gamma_{K^*}(m) d_{K^*}(m) \right] .$$

Fit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>$1.60 \pm 0.22 \text{ GeV}$</td>
</tr>
<tr>
<td>b</td>
<td>$-11.16 \pm 0.82 \text{ GeV}^{-1}$</td>
</tr>
<tr>
<td>Λ</td>
<td>$0.496 \pm 0.008 \text{ GeV}$</td>
</tr>
<tr>
<td>M_0</td>
<td>$1.204 \pm 0.008 \text{ GeV}$</td>
</tr>
</tbody>
</table>

$$\chi^2 / \text{d.o.f.} = 1.25$$
Phase shifts/2

only nonderivative

\[\mathcal{L}_{int} = a K_0^{*+} K^- \pi^0 + \ldots \]

only derivative

\[\mathcal{L}_{int} = b K_0^{*+} \partial_\mu K^- \partial^\mu \pi^0 + \ldots \]

Francesco Giacosa
Spectral function of $K_0^*(1430)$

Is there a $K_0^*(800)$ or not?

Francesco Giacosa
Comparison of the spectral functions of $K^*(892)$ and $K_0^*(1430)$.
Large-N_c
Poles

\[K_0^*(1430) : (1.413 \pm 0.057) - (0.127 \pm 0.011)i \text{ (GeV)} \]
\[K_0^*(800) : (0.745 \pm 0.029) - (0.263 \pm 0.027)i \text{ (GeV)} \]
Pole trajectories in the light scalar kaonic system

The additional companion pole on the left, corresponding to the light k, disappears for N_c larger than 12.4.

Francesco Giacosa
Pole trajectories/2

Francesco Giacosa
Considerations on the scalar kaonic system

- Scalar kaon: out of one "seed" state → 2 poles appear
 - $K_0^*(1430)$ corresponds to a peak
 - $K_0^*(800)$ "no peak" but there is a pole.
- We determined the position of the poles
 - for vector kaon (0.89 - 0.028i (GeV))
 - for scalar kaons
 - $K_0^*(1430) : (1.413 \pm 0.057) - (0.127 \pm 0.011)i$ (GeV)
 - $K_0^*(800) : (0.745 \pm 0.029) - (0.263 \pm 0.027)i$ (GeV)
- $K^*(892)$ is a quark-antiquark state.
- $K_0^*(1430)$ is predominantly a quark-antiquark state.
- $K_0^*(800)$ is a dynamically generated state.
Same phenomenon for other states: past and ongoing works

- $a_0(980)$ as a companion pole of $a_0(1450)$
 T. Wolskanowski, F.G. and D. H. Rischke, $a_0(980)$ revisited,

- Non-Breit-Wigner lineshape of the resonance $\Psi(3770)$. Interestingly, two poles are connected to it.

- Ongoing and future works:
 $\Psi(4040)$ as seed state, $Y(4008)$ as its dynamically generated companion poles.
 $\Psi(4160)$ line shape and its companion poles (eventually also above its mass)
 $X(3872)$ as a companion pole of a seed charm-anticharm state.
 $Ds(2317)$ as a companion pole of a seed charm-starnge state.
The light k in heavy ion collisions

based on W. Broniowski, F.G., V. Begun,
Cancellation of the sigma meson in thermal models
[arXiv:1506.01260 [nucl-th]].
At the freeze-out, the emission of hadrons is well described by thermal models. Question: does the light k and its brother, f₀(500), play a role? Light states, at first yes, but the answer is unexpected.
Theoretical description of a thermal gas

\[\ln Z = \sum_k \ln Z^\text{stable}_k + \sum_k \ln Z^\text{res}_k \]

\[\ln Z^\text{stable},_k = f_k V \int \frac{d^3p}{(2\pi)^3} \ln \left[1 \pm e^{-E_p/T} \right]^{\pm 1} \]

\[E_p = \sqrt{p^2 + M_k^2} \]
Theoretical description of a thermal gas: unstable particles

\[\ln Z_k^{\text{res}} = f_k V \int_0^\infty d_k(M) \, dM \int \frac{d^3p}{(2\pi)^3} \ln \left[1 - e^{-E_p/T} \right]^{-1} \]

At first, the function \(d_k(m)\) can be interpreted as a mass probability density. Namely, a resonance does not have a definite mass but a mass distribution. If not too broad, \(d_k(m)\) well described by a Breit-Wigner function. (This is not the case for the kaonic system and also not for \(f_0(500)\).)
The density function can be directly extracted from two-body scattering data (phase shifts).

\[d_k(M) = \frac{d\delta_k(M)}{\pi dM} \]

Recall from scattering theory:

\[\frac{e^{2i\delta_k} - 1}{2i} = a_k = \frac{-\sqrt{s}\Gamma(\sqrt{s})}{s - m^2 + i\sqrt{s}\Gamma(\sqrt{s})} \]

This is a model-independent way of taking the resonances into account.

Indeed, it is a justification of the validity of thermal gas models.

But it is even more, since it allows also to include repulsions in some channels.
Theoretical description of a thermal gas: QCD

\[
\ln Z = \ln Z_\pi + \ln Z_K + \ln Z_{(1/2,0++)} + \ln Z_{(3/2,0++)} + \ln Z_{(0,0++)} + \ln Z_{(2,0++)} + \ln Z_{(1,1--)} + \ldots
\]

\[
\ln Z_{(I,J)} = (2I + 1)(2J + 1) \int_0^{A_0} \frac{d\delta_{(I,J)}}{\pi dm} \int_p \ln \left[1 - e^{-\frac{\sqrt{p^2 + m^2}}{T}} \right]^{-1}
\]

For many resonances the Breit-Wigner approximation is valid

\[
\frac{d\delta_{I,J}}{\pi dM} \sim \sum_k \frac{\Gamma_{IJ,k}}{2\pi} \left[(M - M_{IJ,k})^2 + \frac{\Gamma_{IJ,k}^2}{4} \right]^{-1}
\]

However, this approximation does not hold for the light \(k \) (and also not for \(f_0(500) \)).

Francesco Giacosa
Theoretical description of a thermal gas: QCD

\[\ln Z = \ln Z_\pi + \ln Z_K + \ln Z_{(1/2,0++)} + \ln Z_{(3/2,0++)} + \ln Z_{(0,0++)} + \ln Z_{(2,0++)} + \ln Z_{(1,1--)} + \ldots \]

\[\ln Z_{(1/2,0++)} + \ln Z_{(3/2,0++)} = \int_0^{\Lambda_0} dm \left[2 \frac{d\delta_{(1/2,0)}}{\pi dm} + 4 \frac{d\delta_{(3/2,0)}}{\pi dm} \right] \int_p \ln \left[1 - e^{-\frac{\sqrt{p^2 + m^2}}{T}} \right]^{-1} \]

Simple and model-independent procedure: **just use scattering data!**
The scalar kaonic resonace $K_0^*(800)$: (partial) cancellation in thermal models

The total contribution from is the red curve: $\ln Z_{(1/2,0)} + \ln Z_{(3/2,0)}$ cancellation is evident: easiest thing to do is to forget about the k. (Eventually, visible in correlations).

Francesco Giacosa
The f$_0$(500) spectral function and the isotensor repulsion/1

The total contribution from J=0 is the red curve: $\ln Z(0,0) + \ln Z(2,0)$

$\ln Z(0,0)$ is the contribution of f$_0$(500). It is indeed nonzero and even non-negligible, but it is almost exactly cancelled by the isotensor repulsion. Thermal models however usually neglect repulsions.

Either you take into account both l=0 and l =2, or –simply- you neglect both of them.
Conclusions

The light k exists
(as a companion dynamically generated pole)
but
can be neglected in thermal models at nonzero T
Thank You
Cutoff function/1

- the cutoff parameter Λ does not exist at the Lagrangian level
- it can be implemented by using a non-local interaction term (if $f_\Lambda(q) = f_\Lambda(|q|)$), e.g.

$$\mathcal{L}_{\text{int}} = gS(x)\phi^2(x) \rightarrow \mathcal{L}_{\text{int}} = gS(x) \int d^4y \phi(x+y/2)\phi(x-y/2)\Phi(y)$$

- changes also the tree-level result for the decay width:

$$\Gamma_{\text{tree}}(s) \rightarrow \Gamma_{\text{tree}}(s) \cdot f_\Lambda^2(\rho S_{\phi\phi})$$

- our choice:

Regularization function in our case

$$f_\Lambda(q) = \exp\left(-|q|^2/\Lambda^2\right)$$
The contribution of the loop $\Pi(m^2)$ in which the particles φ_1 and φ_2 circulate as calculated from the original local Lagrangian (1) reads

$$\Pi(m^2) = \int \frac{d^4k_1}{(2\pi)^4} \frac{[a-b(k_1 \cdot k_2)]^2}{[k_1^2 - m_1^2 + i\varepsilon][k_2^2 - m_2^2 + i\varepsilon]} ,$$

(6)

where the constraint $k_2 = p - k_1$ is understood and p is the momentum of the unstable particle Σ. In its reference frame $p = (m, 0)$. As mentioned above, this loop contribution is divergent (with Λ^4). The substitution (4) makes it convergent thanks to the form-factor:

$$\Pi(m^2) \rightarrow \Pi_\Lambda(m^2) = \int \frac{d^4k_1}{(2\pi)^4} \frac{[a-b(k_1 \cdot k_2)]^2 f_\Lambda^2(\vec{k}_1^2)}{[k_1^2 - m_1^2 + i\varepsilon][k_2^2 - m_2^2 + i\varepsilon]} .$$

(7)

At this point, one may object that the form factor breaks covariance, since it depends on the three-momentum only. We will show in the next section that this is not necessarily the case. Once the form factor is in-
Quark model(s) and their QFT extensions

Mesons in a Relativized Quark Model with Chromodynamics
S. Godfrey, Nathan Isgur
Published in Phys.Rev. D32 (1985) 189-231

Mesonic loops e.g. included into
A Low Lying Scalar Meson Nonet in a Unitarized Meson Model
E. van Beveren, T. A. Rijken, K. Metzger, C.~Dullemond, G.~Rupp and J. E.~Ribeiro,
Z. Phys. C 30 (1986) 615
Meson spectroscopy: too much excitement and too few excitations
G. Rupp, S. Coito and E. van Beveren,

NJL: quark-based model with
chiral symmetry and SSB
chiral condensate
Effective quark mass
Mesons as quarkonia (pion: ok)

QCD phenomenology based on a chiral effective Lagrangian
Tetsuo Hatsuda, Teiji Kunihiro
Phys.Rept. 247 (1994) 221-367

The Infrared behavior of QCD Green's functions: Confinement dynamical symmetry breaking,
and hadrons as relativistic bound states
Reinhard Alkofer, Lorenz von Smekal

Baryons as relativistic three-quark bound states
G. Eichmann, H.~ Sanchis-Alepuz, R. Williams, R. Alkofer and C. S. Fischer,
Progr. Part. Nucl. Phys. 91 (2016) 1

Francesco Giacosa
Example of conventional quark-antiquark states: the ρ and the π mesons

$\mathbf{u} \bar{\mathbf{d}}$

Vector channel: Rho-meson

$m_{\rho^+} = 775$ MeV

Pseudoscalar channel: Pion

$m_{\pi^+} = 139$ MeV

$M_u + M_d \approx 7$ MeV

Mass generation in QCD is a nonpert. phenomenon based on SSB

In the scalar channel, the situation is more complicated: a0(1450) and a0(980), see later on

Francesco Giacosa
a_{0}(1450) and a_{0}(1470) from PDG

\[I^{G}(J^{PC}) = 1^{-}(0^{++}) \]

Decays into \(\eta \pi, \eta' \pi, KK \)

\[a_{0}(1450) \text{ MASS} \]

\begin{tabular}{lrrr}
\hline
VALUE (MeV) & EVTS & DOCUMENT ID & TECN \\
1474 & \pm 19 & OUR AVERAGE & \\
\hline
\end{tabular}

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

\[a_{0}(980) \text{ MASS} \]

\[I^{G}(J^{PC}) = 1^{-}(0^{++}) \]

Decays into \(\eta \pi, KK \)

\[a_{0}(980) \text{ MASS} \]

\begin{tabular}{lrrr}
\hline
VALUE (MeV) & DOCUMENT ID & TECN \\
980 & \pm 20 \text{ OUR ESTIMATE} & Mass determination very model dependent & \\
\hline
\end{tabular}

Francesco Giacosa
Lagrangian for a0 system

\[\mathcal{L}_{a_0 \eta \pi} = A_1 a_0^0 \eta \pi^0 + B_1 a_0^0 \partial_\mu \eta \partial^\mu \pi^0 \]
\[\mathcal{L}_{a_0 \eta' \pi} = A_2 a_0^0 \eta' \pi^0 + B_2 a_0^0 \partial_\mu \eta' \partial^\mu \pi^0 \]
\[\mathcal{L}_{a_0 K\bar{K}} = A_3 a_0^0 (K^0 \bar{K}^0 - K^- K^+) + B_3 a_0^0 (\partial_\mu K^0 \partial^\mu \bar{K}^0 - \partial_\mu K^- \partial^\mu K^+) \]

The field a0 corresponds (roughly) to a0(1450)
Spectral function, poles, and large-Nc

The additional companion pole on the left, corresponding to the $a_0(980)$, disappears for N_c larger than 4.9.

Branching ratios for $a_0(1450)$ and $a_0(980)$ in agreement with PDG

Francesco Giacosa
General properties

- $\Psi(3770)$
- D-wave state, first charmonium above DD threshold.

$\Psi(3770)$

$$I^G(J^{PC}) = 0^-(1^{--})$$

$\Psi(3770)$ MASS (MeV)

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3773.13 ± 0.35</td>
<td>OUR FIT</td>
<td>Error includes scale factor of 1.1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3778.1 ± 1.2</td>
<td>OUR AVERAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\Psi(3770)$ WIDTH

<table>
<thead>
<tr>
<th>VALUE (MeV)</th>
<th>EVTS</th>
<th>DOCUMENT ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.2 ± 1.0</td>
<td>OUR FIT</td>
<td></td>
</tr>
<tr>
<td>27.5 ± 0.9</td>
<td>OUR AVERAGE</td>
<td></td>
</tr>
</tbody>
</table>

Mode | Fraction (Γ_i/Γ) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_1</td>
<td>$D\bar{D}$</td>
</tr>
<tr>
<td>Γ_2</td>
<td>$D^0\bar{D}^0$</td>
</tr>
<tr>
<td>Γ_3</td>
<td>D^+D^-</td>
</tr>
</tbody>
</table>
Lagrangian and loops

\[\mathcal{L}_{\psi D \bar{D}} = ig_{\psi D^0 \bar{D}^0} \psi_{\mu} \left(\partial^\mu D^0 \bar{D}^0 - \partial^\mu \bar{D}^0 D^0 \right) + ig_{\psi D^+ D^-} \psi_{\mu} \left(\partial^\mu D^+ D^- - \partial^\mu D^- D^+ \right) \]

Francesco Giacosa
Fit to data

\[\sigma_{e^+e^- \rightarrow DD} = \frac{\pi}{2E} g_{\psi e^+e^-}^2 \rho_{\psi}(E) \]

Fig. 5 Data: • BES [7], * BES [5], * BaBar [6] (the latter not used in the fit). Solid line: our fit (cf. Table 1).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_\psi) (MeV)</td>
<td>3773.05 ± 0.95</td>
</tr>
<tr>
<td>(\Lambda) (MeV)</td>
<td>272.55 ± 1.17</td>
</tr>
<tr>
<td>(g_{\psi DD})</td>
<td>30.7 ± 4.8</td>
</tr>
<tr>
<td>(g_{\psi e^+e^-})</td>
<td>(1.062 ± 0.032) × 10^{-3}</td>
</tr>
<tr>
<td>(\chi^2)</td>
<td>20.52</td>
</tr>
<tr>
<td>(\chi^2/d.o.f)</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Francesco Giacosa
Position(s) of the poles of $\Psi(3770)$

Two poles are present in the complex plane

First pole: $E = 3776.8 - i12.3$ MeV,

hence

$m^\text{pole}_\psi \simeq 3776.8 \pm 1.0$ MeV and
$\Gamma^\text{pole}_\psi \simeq 24.6 \pm 2.0$ MeV,

Second pole: $E = 3741.2 - i18.5$ MeV

Francesco Giacosa
The additional companion pole disappears for N_c larger than 3.9.
Phase-shift formula

The radial wave function with angular momentum l of a particle scattered by central potential $U(r)$ is

$$
\psi_l(r) \propto \sin[kr - l\pi/2 + \delta_l],
$$

where $k = |k|$ is the length of the three-momentum, and δ_l is the phase shift due the interaction with the potential. If we confine our system into a sphere of radius R, the condition $kR - l\pi/2 + \delta_l = n\pi$ with $n = 0, 1, 2, \ldots$ must be met, since $\psi_l(r)$ has to vanish at the boundary. Conversely, the number of states n_0 that one can has by limiting k in the range $(0, k_0)$ is given by $n_0 = (k_0R - l\pi/2 + \delta_l)/\pi$. Then, the density of states that one can place between k and $k + dk$ is given by

$$
\frac{d\eta_l}{dk} = \frac{R}{\pi} + \frac{1}{\pi} \frac{d\delta_l}{dk},
$$

where the first term describes the density of states $\frac{d\eta_{l,\text{free}}}{dk}$ in absence of interactions, while the second term $\frac{1}{\pi} \frac{d\delta_l}{dk}$ describes the effect of the interacting potential.

When translating the discussion from Quantum Mechanics to Quantum Field Theory, we replace the momentum k with the invariant mass m, and the angular momentum l with the pair (I, J). Upon summing over the latter, one obtains the full density of states of an interacting pion gas as

$$
\frac{d\eta}{dm} = \delta(m - m_\pi) + \sum_{I, J} \frac{1}{\pi} \frac{d\delta_{I, J}(m)}{dm}.
$$

When plugging the previous equation into the general expression

$$
\ln Z_{I, J} = J_{(I, J)} \int_0^\infty \frac{d\eta_{I, J}}{dm} \int d^3p \frac{1}{(2\pi)^3} \ln \left[1 - e^{-\sqrt{p^2 + m^2}/T}\right]
$$

Francesco Giacosa