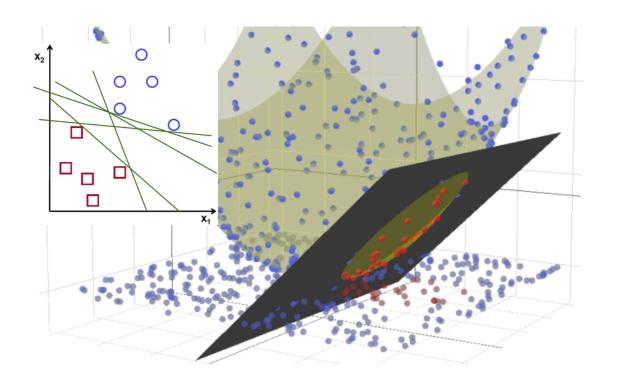


Machine learning Lecture 6



Marcin Wolter IFJ PAN

11 April 2018

• Practical exercise – simplified ATLAS analysis using root/TMVA

Slides from: Paweł Malecki

Measurement of Tau Polarisation in $Z/\gamma^* \rightarrow \tau \tau$ Decays in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV with the ATLAS

Detector

STDM-2015-18

Version: 1.0

To be submitted to: Eur. Phys. J. C

Supporting internal notes

Analysis note: https://cds.cern.ch/record/2105517

Comments are due by: 11 June 2017

Analysis Team

[email: atlas-stdm-2015-18-editors@cern.ch]

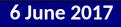
Marzieh Bahmani, Philip Bechtle, Pawel Bruckman de Renstrom, Jane Cummings, William Davey, Sarah Demers, Klaus Desch, Jochen Dingfelder, Anna Kaczmarska, Christian Limbach, Pawel Malecki, Elzbieta Richter-Was, Lara Schildgen, Peter Wagner, Benedict Winter, Marcin Wolter

Editorial Board

[email: atlas-stdm-2015-18-editorial-board@cern.ch]

Eric Torrence (chair) Quentin Buat Stan Lai

Paper: https://cds.cern.ch/record/2283028



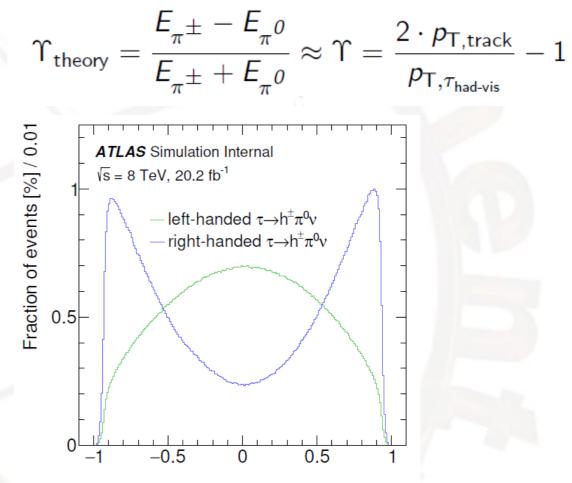
Introduction

Polarization:

 $P_{\tau} = \frac{\sigma_{\rm right} - \sigma_{\rm left}}{\sigma_{\rm right} + \sigma_{\rm left}}$

- Measured in 66 116 GeV
 Z mass range,
- Also measured in fiducial region that resembles signal region,
- Motivation:
- Sensitivity to $sin^2\theta_w$,
- Complementary to LEP $(pp->Z->\tau\tau \text{ instead of } ee->Z->\tau\tau),$

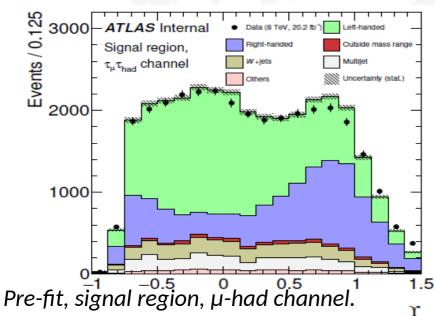
- Basis for future measurements and searches (e.g. Higgs CP, charged Higgs). Methodology: Template fit of a variable sensitive to tau helicity, Y:



Υ

Analysis flow

- > Select Z → π (lep-had) events,
- > Use lepton to trigger and tag event.
 Measure polarisation from hadronic decay,
- > Use TauSpinner program to attribute helicity to tau leptons in MC,
- Estimate background:
- $W \rightarrow \ell v$ and QCD dijets: data-driven,
- $Z \rightarrow \ell \ell$, ttbar: MC.

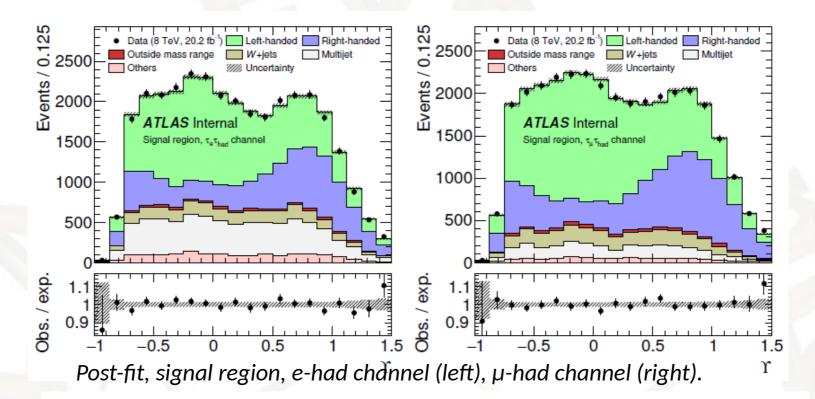


Perform ML fit with the obtained Y templates to asess the number of leftand right-handed taus.

> Systematic uncertainties:

	Source of uncertainty	$\sigma_{P_{\tau}}$ in mass range	$\sigma_{P_{\tau}}$ in fiducial region
	Modelling of signal process	+0.026 -0.026	+0.022 -0.022
	τ_{had} identification	+0.019 -0.020	+0.023 -0.024
	MC statistical	+0.016 -0.016	+0.018 -0.019
	Signal sample splitting	+0.015 -0.014	+0.015 -0.015
	TES and TER	+0.013 -0.015	+0.017 -0.019
	Multijet estimate	+0.013 -0.012	+0.013 -0.012
	PDF	+0.006 -0.007	+0.005 -0.005
	W+jets shape	+0.002 -0.002	+0.003 -0.003
	Other	+0.004 -0.008	+0.003 -0.003
	Total systematic uncertainty	+0.040 -0.039	+0.039 -0.037
	Statistical uncertainty	+0.015 -0.015	+0.016 -0.016
•			

Results



Channel	P_{τ} in mass range	P_{τ} in fiducial region			
$\tau_e - \tau_{\rm had}$	-0.195 ± 0.024 (stat) $^{+0.048}_{-0.050}$ (syst)	-0.331 ± 0.026 (stat) $^{+0.049}_{-0.052}$ (syst)			
$\tau_{\mu} - \tau_{\rm had}$	-0.129 ± 0.020 (stat) $^{+0.045}_{-0.046}$ (syst)	-0.259 ± 0.021 (stat) $^{+0.046}_{-0.046}$ (syst)			
Combination	-0.141 ± 0.015 (stat) $^{+0.041}_{-0.041}$ (syst)	-0.268 ± 0.016 (stat) $^{+0.040}_{-0.041}$ (syst)			
Theory predictions: $P_{T} = -0.152 \pm 0.001$ $P_{T}^{fid} = -0.270 \pm 0.006$					

LEP value (Z-pole): $P_{\tau} = -0.1439 \pm 0.0043$

Pa. Malecki - ATLAS SM & B results

Exercise ATLAS Z → tau tau selection

- Monte-Carlo:
 - mc12/Ztautau.root signal
 - Powheg_ttbar.root background
 - Wenu.root
 - Wmunu.root
 - Wtaunu.root
 - Zee.root
 - Zmumu.root
- background
 background
- background
- background
- background

Tau Tau \rightarrow hadronically (jet) + muon (electron) + neutrino

- Data:
 - data12/Egamma.PhysCont.grp14.root electron sample
 - data12/Muons.PhysCont.grp14.root muon sample

(at the beginning start working with the muon sample)

 The cross section/luminosity is included in the event weight WeightLumi, which is used to weight the MC events.

Preselection

if(!(evtsel_is_dilepVeto > 0 && evtsel_is_tau > 0 &&
fabs(evtsel_tau_eta) < 2.47 && evtsel_is_conf_lep_veto == 1 &&
evtsel_tau_numTrack == 1 && evtsel_lep_pt > 26 &&
fabs(evtsel_lep_eta) < 2.4 && evtsel_transverseMass < 70))
continue;</pre>

if (!(evtsel_is_oppositeSign>0 && evtsel_is_mu>0 &&
evtsel_is_isoLep>0)) continue;

Selecting muon sample

ATLAS $Z \rightarrow$ tau tau selection

- Variables used for training:
 - evtsel_tau_et
 - evtsel_dPhiSum
 - evtsel_tau_pi0_n
 - evtsel_transverseMass
 - sum_cos_dphi
- Spectator
 - vis_mass
- Program:
 - TMVAClassificationMW.py and TMVAClassificationApplication.py
 First makes a basic training, the second applies the trained methods to the data.

ATLAS $Z \rightarrow$ tau tau selection

- Install root and TMVA
- Copy the programs and data:
 - Inside IFJ PAN:
 - http://nz14-46.4.ifj.edu.pl/cwiczenieATLAS/exerciseATLAS.tgz
 - From outside IFJ PAN:
 - http://nz14-46.ifj.edu.pl/cwiczenieATLAS/exerciseATLAS.tgz
- Run the code:
 - python TMVAClassificationMW.py
 - python TMVAClassificationApplicationMW.py
- Modify it and play with it:
 - Optimize parameters of a selected method
 - Maybe we can skip some variables (or add)?
 - Try to use individual variables used to calculate sum_cos_dphi.
 Maybe Deep Neural Network and more variables might help?

ATLAS $Z \rightarrow$ tau tau selection

Try to look, how the visible mass (spectator) changes after selection

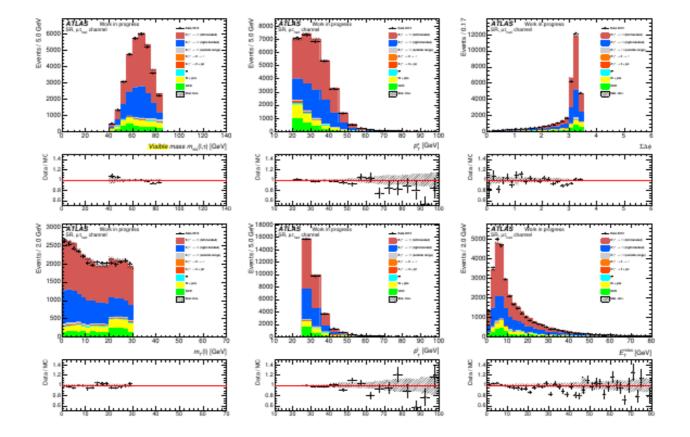


Figure 41: Distributions of variables observed in $Z \rightarrow \tau \tau$ (μ -had channel). From top-left: visible mass of τ -lepton system, τ transverse momentum, sum of polar angles between τ and missing- E_T and between lepton and missing- E_T , transverse mass of the lepton-missing- E_T system, lepton transverse momentum and missing- E_T .

M. Wolter, Uczenie maszynowe

ATLAS Z → tau tau selection

Event Selection and Background Estimate

Region / Cut	Signal Region	Same Sign	W Control Region	QCD Control Region
Single lepton trigger + offline lepton pT	evtsel_is_mu / evtsel_is_el			
Isolated Lepton	evtsel_is_isoLep			!evtsel_is_isoLep
Medium Tau ID	evtsel_is_tau			
Veto dileptons	evtsel_is_dilepVeto			
Muon Veto + medium Electron Veto	evtsel_is_conf_lep_veto_medium			
Single Prong tau	evtsel_tau_numTrack == 1			
Transverse Mass	evtsel_transverseMass < 30		evtsel_transverseMass > 70	
Sum Delta Phi	evtsel_dPhiSum < 3.5		evtsel_dPhiSum > 3.5	
Opposite Sign	evtsel_is_oppositeSign	!evtsel_is_oppositeSign	evtsel_is_oppositeSign / !evtsel_is_oppositeSign	evtsel_is_oppositeSign / !evtsel_is_oppositeSign

Cuts used in the analysis to select $Z \rightarrow taut tau$ How do they compare to our Machine Learning result?

Machine Learning and HEP

- 90'ies Neural Nets used by LEP experiments
- BDT (Adaboost) invented in 97
- Machine Learning used extensively at D0/CDF (mostly BDT, also Neural Nets) in the 00'ies
- Last years mostly BDT built in TMVA ROOT package (popular among physicists). Neural Nets and other techniques treated as obsolete.
- Not much work within LHC experiments on studying possible better MVA techniques.
- Enormous development of Machine Learning in the outside world in the last 10 years ("Big Data", "Data Science", even "Artificial Intelligence" is back).
- We have to catch up and learn from computer scientists:

Make an open Higgs challenge!

Task: identify H->tau tau signal out of background in the simulated data.

How did it work ?

- People register to Kaggle web site hosted https://www.kaggle.com/c/higgsboson . (additional info on https://higgsml.lal.in2p3.fr).
- ...download training dataset (with label) with 250k events
- ...train their own algorithm to optimize the significance (\dot{a} la s/sqrt(b))
- ...download test dataset (without labels) with 550k events
- ...upload their own classification
- The site automatically calculates significance. Public (100k events) and private (450k events) leader boards update instantly. (Only the public is visible)
- 1785 teams (1942 people) have participated
- most popular challenge on the Kaggle platform (until a few weeks ago)
- 35772 solutions uploaded

Funded by: Paris Saclay Center for Data Science, Google, INRIA

Final leaderboard

#	Δrank	Team Name ‡ model uploaded * in the money		Score 🚱	Entries	Last Submission UTC (Best – Last Submission)
1	↑1	Gábor Melis ‡ *	7000\$	3.80581	110	Sun, 14 Sep 2014 09:10:04 (-0h)
2	↑1	Tim Salimans ‡ *	4000\$	3.78913	57	Mon, 15 Sep 2014 23:49:02 (-40.6d)
3	↑1	nhlx5haze ‡ *	2000\$	3.78682	254	Mon, 15 Sep 2014 16:50:01 (-76.3d)
4	↑38	ChoKo Team 🎩		3.77526	216	Mon, 15 Sep 2014 15:21:36 (-42.1h)
5	↑35	cheng chen		3.77384	21	Mon, 15 Sep 2014 23:29:29 (-0h)
6	↑16	quantify		3.77086	8	Mon, 15 Sep 2014 16:12:48 (-7.3h)
7	↑1	Stanislav Semenov	/ & Co (HSE Yandex)	3.76211	68	Mon, 15 Sep 2014 20:19:03
8	↓7	Luboš Motl's team	Best physicist	3.76050	589	Mon, 15 Sep 2014 08:38:49 (-1.6h)
9	↑8	Roberto-UCIIIM		3.75864	292	Mon, 15 Sep 2014 23:44:42 (-44d)
10	↑2	Davut & Josef 🎩		3.75838	161	Mon, 15 Sep 2014 23:24:32 (-4.5d)
45	ō ↑ 5	crowwork 📭 ‡	HEP meets ML award XGBoost authors Free trip to CERN	3.71885	94	Mon, 15 Sep 2014 23:45:00 (-5.1d)
78	82 ↓14	9 Eckhard	•	3.49945	5 29	Mon, 15 Sep 2014 07:26:13 (-46.1h)
9	991 t 4	Rem.		3.20423	2	Mon, 16 Jun 2014 21:53:43 (-30.4h)
	_					

The winners

See

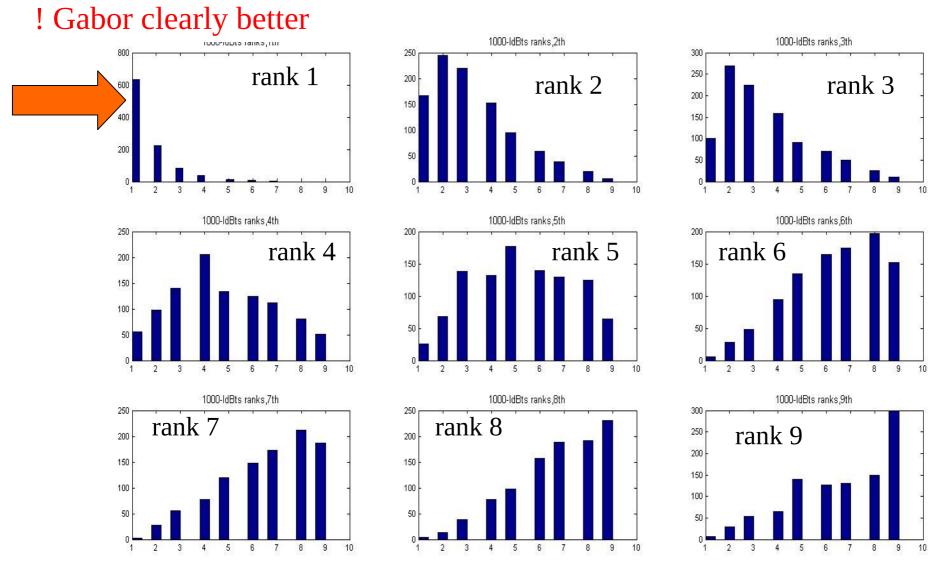
http://atlas.ch/news/2014/machine-learning-wins -the-higgs-challenge.html

- 1 : **Gabor Melis** (Hungary) software developer and consultant : wins 7000\$.
- 2 : Tim Salimans (Neitherland) data science consultant: wins 4000\$
- 3 : Pierre Courtiol (nhlx5haze) (France) ? : wins 2000\$
- HEP meets ML award: (team crowwork), Tianqi
 Chen (U of Washington PhD student in Data
 Science) and Tong He (graduate student Data
 Science SFU). Provided XGBoost public
 software used by many participants.

https://github.com/dmlc/xgboost

Rank distribution after bootstrap

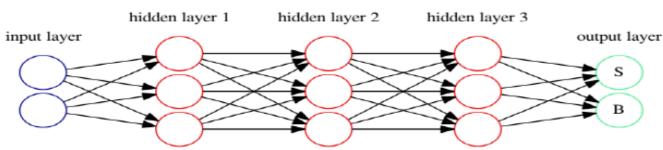
Distribution of rank of participant of rank i after 1000 bootstraps of the test sample.



David Rousseau HiggsML visits CERN, 19th May 2015

Deep neural network

- Hierarchical feature extraction first build abstract objects, than find dependencies between them.
- Deep neural network (DNN)- an artificial neural network with multiple hidden layers of units between the input and output layers.
- Extra layers composition of features from lower layers, potential of modeling complex data with fewer units than a similarly performing shallow network.



- ▶ inputs: normalized features (~30), some log transformed
- 3 hidden layers of 600 neurons each
- output layer: 2 softmax units (one for signal, one for background)
- activation function: "max channel" in groups of 3
- trained to minimize cross entropy
- regularization: dropout on hidden layers, L₁ + L₂ penalty and a mild sparsity constraint input weights

Challenge winning Gabor's deep neural network (from Gabor's presentation)

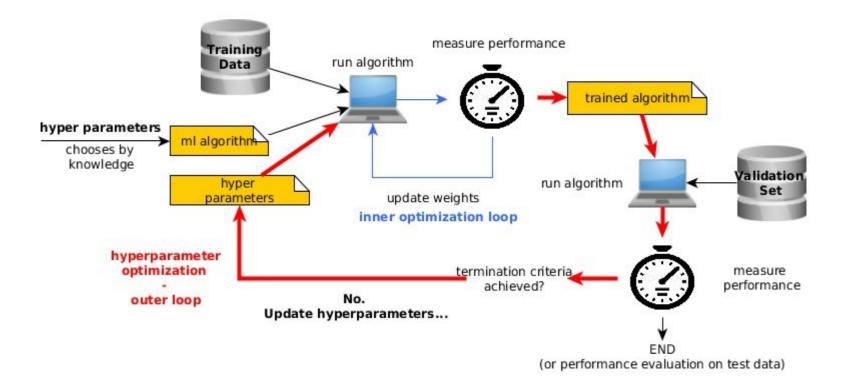
- CV bagged NNs: 3.83
- CV bagged xgboost: 3.79

Remark:

Few years ago some experts claimed neural networks are an obsolete tool :)

Automatic optimization of hyperparameters

- Manual optimization of NN (or any other method) is time consuming.
- Fortunately the Bayesian optimization methods can rival and surpass human domain experts in finding good hyperparameter settings.
- SMAC, SPEARMINT, TPE (and others) are doing that with great success: http://www.cs.ubc.ca/~hutter/papers/13-BayesOpt_EmpiricalFoundation.pdf



Analiza podczas praktyk studenckich

- Próbowaliśmy powtórzyć HiggsChallenge podczas praktyk studenckich.
- Udało się za pomocą TMVA (konwersja danych do formatu root) oraz pakietu XGBoost
- Optymalizacja parametrów XGBoost za pomocą programu hyperopt

A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, H. Voss (2009) TMVA 4 Package Documentation https://tmva.sf.net

Tianqi Chen, Tong He, Bing Xu and Michael Benesty (2014) XGBoost Package Documentation https://github.com/dmlc/xgboost

James Bergstra, Dan Yamins, and David D. Cox (2013) Hyperopt Package Documentation https://github.com/hyperopt Porównianie wyników uzyskanych przez nas automatycznie z wynikami z najlepszymi znalezionymi parametrami dla XGBoost.

Kto	9. K-H	M. Wolter	Nasze obliczenia
Maks. głębokość	9	10	9
Wsp. uczenia	0.01	0.089	0.059
Liczba drzew	3000	150/250/500	300
Liczba testów	-	300	100
Sub_sample	0.9	1	0.9
Maks. ROC	0.987	0.933/0.934/0.933	0.934

Sub_sample - jaka cześć danych brana jest do procesu uczenia -

wprowadza pewną losowość i zapobiega przeuczaniu

Jak widać wyniki przez nas osiągnięte są znacznie słabsze. Prowadziliśmy poszukiwania w innym regionie parametrów.

▲□▶▲□▶▲□▶▲□▶ = の��