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Make a network deeper?

Methods with many processing steps (or equivalently with
hierarchical feature representations of the data) are more
efficient for difficult problems than shallow methods (which
two-layer ANNs or support vector machines are examples of)?

Deep Neural Network: a stack of sequentially trained auto
encoders, which recognize different features (more
complicated in each layer) and automatically prepare a new
representation of data. This is how our brains are organized

But how to train such a stack?

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-
wise training of deep networks. Advances in neural information processing
systems, 19, 153.

http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-deep-learning-part-4/
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Training a Deep Neural Network

® |n the early 2000s, attempts to train deep neural networks were frustrated by
the apparent failure of the well known back-propagation algorithms
(backpropagation, gradient descent). Many researchers claimed NN are
gone, only Support Vector Machines and Boosted Decision Trees should be
used!

® In 2006, Hinton, Osindero and Teh? first time succeeded in training a deep
neural network by first initializing its parameters sequentially, layer by layer.
Each layer was trained to produce a representation of its inputs that served
as the training data for the next layer. Then the network was tweaked using
gradient descent (standard algorithm).

® There was a common belief that Deep NN training requires careful
Initialization of parameters and sophisticated machine learning
algorithms.

'Hinton, G. E., Osindero, S. and Teh, Y., A fast learning algorithm for deep belief nets, Neural Computation 18,
1527-1554.
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Training with a brute force

® |n 2010, a surprising counter example to the conventional wisdom was
demonstrated®.

® Deep neural network was trained to classify the handwritten digits in the
MNIST? data set, which comprises 60,000 28 x 28 = 784 pixel images for
training and 10,000 images for testing.

— We can train a DNN on MNIST as an exercise!

® They showed that a plain DNN with architecture (784, 2500, 2000, 1500,
1000, 500, 10 — HUGE!!), trained using standard stochastic gradient descent
(Minuit on steroids!), outperformed all other methods that had been applied to
the MNIST data set as of 2010. The error rate of this ~12 million parameter
DNN was 35 images out of 10,000.

The training images were randomly and slightly deformed before every
training epoch. The entire set of 60,000 undeformed images could be
used as the validation set during training, since none were used as
training data.

1 Ciresan DC, Meier U, Gambardella LM, Schmidhuber J. ,Deep, big, simple neural nets for handwritten
digit recognition. Neural Comput. 2010 Dec; 22 (12): 3207-20.
2 http://yann.lecun.com/exdb/mnist/
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So why did supervised learning with ‘ﬂ?
backpropagation not work well in the past?
1) Our labeled datasets were thousands of times too small.
2) Our computers were millions of times too slow.
3) We Iinitialized the weights in a stupid way.
4) We used the wrong type of non-linearity.

Geoffrey Hinton on youtube lecture
See http.://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning-part-4/

Deep Learning =
Lots of training data + Parallel Computation + Scalable, smart algorithms

The Deep Learning “Computer Vision Recipe”
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Comments

We used the wrong type of non-

Iinearity. = sigmoid
=—=thanh
4 L

It was found, that the very much non- RelU
== softplus

differentiable and very simple function ReLU  slt——F"— _________________________________________
f(x)=max(0,x) tends to be the best. :

1) Leads to sparse representations, meaning |
not many neurons need to output non-zero 4} ...

values. |
2) Simplicity of the function, and its -/ - _ N
derivatives, => faster to work with. ; i

3) Helps avoid the vanishing gradient problem
that was the bane of backpropagation.

RelLU — rectified Iinear uny

Jarrett, K., Kavukcuoglu, K., Ranzato, M. A., & LeCun, Y. (2009, September). What is the best multi-stage
architecture for object recognition?. In Computer Vision, 2009 IEEE 12th International Conference on (pp.
2146-2153). IEEE.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on Machine Learning (ICML-10) (pp. 807-814).

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. In International
Conference on Atrtificial Intelligence and Statistics (pp. 315-323).
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Vanishing gradient

® Vanishing gradients—In case of deep networks, for any activation function, abs(dW)
will get smaller and smaller as we go backwards with every layer during back
propagation. The earlier layers are the slowest to train in such a case.

® The weight update is minor and results in slower convergence. This makes the

optimization of the loss function slow. In the worst case, this may completely stop the
neural network from training further.

Gradient I| \
close o0 | \

/H
: ﬁg-‘_ Saturation .
"’4‘/ .

Saturated neurons gradients - 0 ah, oh,

B dh; ah, oh,
dh,  oh,_,  oh, oh, ah,

p J

*9

1 ) . * Decays exponentially

Drive previous layers gradients to 0 : .

{ Tl fars [ } / * Network stops learning, can’t update
EspeClally 10r 1ar iime-stamps . .
e P * Impossible to learn correlations
between temporally distant events

' Known problem for deep feed-forward networks.
. For recurrent networks (even shallow) makes impossible to learn long-term dependencies!
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Comments

We initialized the weights in a stupid way.

* It was not so much choosing random weights that was problematic, as
choosing random weights without consideration for which layer the weights
are for. The old vanishing gradient problem happens, basically, because
backpropagation involves a sequence of multiplications that invariably result in
smaller derivatives for earlier layers.

* Unless weights are chosen with difference scales according to the layer
they are in - making this simple change results in significant
Improvements.

* We use a heuristic to initialize the weights depending on the non-linear
activation function.

4.04.2017 M. Wolter, Machine learning 3




http.//pages.cs.wisc.edu/~dyer/cs540/handouts/deep-learning-nature2015. pdf
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A very nice review

Deep learning, Yann LeCun, Yoshua Bengio, Geoffrey Hinton,
doi:10.1038/nature14539

REVIEW

doi:10.1038/nature 14539

Deep learning

Yann LeCun", Yoshua Bengio® & Geoffrey Hinton**

Deep learning allows computational models that are composed of multiple processing layers to learn representations of
data with multiple levels of abstraction. These methods have dramatically improved the state -of-the-art in speech rec-
ognition, visual object recognition, object detectionand many other domains suchas drug discovery and genomics. Deep
learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate howa machine
should change its internal parameters that are used to compute the representationin each layer from the representation in
the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and
audio, whereas recurrent nets have shone light on sequential data such as text and speech.

achine-learning technology powers many aspects ofmodern
M society: from web searches to content filtering onsocial net-

waorks to recommendations on e-commerce websites, and
it is increasingly present in consumer products such as cameras and
smartphones. Machine-learning systems are used to identify objects
inimages, transcribe speech into text, match news items, posts or
products with users’ interests, and select relevant results of search.
Increasingly, these applications make use of a class of techniques called
deep learning.

Conventional machine-learning techniques were limited in their
ability to process natural data in their raw form. For decades, con-
structing a pattern-recognition or machine-learning system required
careful engineeringand considerable domain expertise to design a fea-
ture extractor that transformed the raw data (such as the pixel values
of an image ) into a suitable internal representation or feature vector
from which thelearning subsystem, often a classifier, could detect or
classify patterns in the input.

Representation learningisa set of methods that allows a machine to
be fed withraw data and to automatically discover the re presentations
needed for detection or classification. Deep-learning methods are
representation-learning methods with multiple levels of representa-

intricate structures in high-dimensional dataand is therefore applica-
ble to many domains of science, businessand government. In addition
to beating recordsin image recognition'~ and speech recognition’, it
hasbeaten other machine-learning techniques at predictingthe activ-
ity of potential drug molecules®, analysing particle accelerator data®'",
reconstructing brain circuits', and predicting the effects of mutations
in non-coding DNA on gene expressionand disease™"?, Perhaps more
surprisingly, deep learning has produced extre mely promising results
for various tasks in natural language understanding', particularly
topic classification, sentiment analysis, question answering'” andlan-
puage translation™ ",

We think that deep learning will have many more successes in the
near future because it requires very little engineering by hand, so it
can easily take advantage ofincreasesin the amount of available com -
putation and data. New learning algorithmsand architectures that are
currently being developed for deep neural networks will only acceler-
ate this progress.

Supervised learning
The most commeon form of machine leaming, deep or not, is super-
vised learning. Imagine that we want to build a system thatcan classify

M. Wolter, Machine learning
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Searching for exotic particles in high-energy
physics with deep learning

P. Baldi', P. Sadowski! & D. Whiteson?

Collisions at high-energy particle colliders are a traditionally fruitful source of exotic particle
discoveries. Finding these rare particles requires solving difficult signal-versus-background
classification problems, hence machine-learning approaches are often used. Standard
approaches have relied on ‘shallow’ machine-learning models that have a limited capacity to
learn complex nonlinear functions of the inputs, and rely on a painstaking search through

manually constructed nonlinear features. Progress on this problem has slowed, as a variety of

techniques have shown equivalent performance. Recent advances in the field of deep learning
make it possible to learn more complex functions and better discriminate between signal and
background classes. Here, using benchmark data sets, we show that deep-learning methods
need no manually constructed inputs and yet improve the classification metric by as much as
8% over the best current approaches. This demonstrates that deep-learning approaches can

improve the power of collider searches for exotic particles.

4.04.2017 M. Wolter, Machine learning 10
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Exotic Higgs decays
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Figure 1 | Diagrams for Higgs benchmark. (a) Diagram describing the
signal process involving new exotic Higgs bosons HO and H*. (b) Diagram

describing the background process involving top quarks (t). In both cases,
the resulting particles are two W bosons and two b-quarks.
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Exotic Higgs boson searches
(simulated CMS data)

® | ow level variables — 22 variables (here just few plotted)
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0.15- - - ' observed particle (a-e) as well as the imbalance of momentum in the
0.15L1 4 final state (f). Momentum angular information for each observed particle is

also available to the network, but is not shown, as the one-dimensional
projections have little information.
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Exotic Higgs searches

® Physicists use the well discriminating high-level variables — they are built out
of low-level variables and do not contain any additional information (7
variables).
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Figure 3 | High-level input features for Higgs benchmark. Distributions in

simulation of invariant mass calculations in £vjjbb events for simulated
signal (black) and background (red) events.
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Higgs searches

® Data: 2 600 000 events for training,
100 000 for validation

® Deep NN: 5 layers, 300 nodes in
each layer, fully connected

Table 1 | Performance for Higgs benchmark.

Technique Low-level High-level Complete
AUC
BDT 0.73 (0.01) 0.78 (0.01D) 0.81 (0.01)
NN 0.733 (0.007) 0.777 (0.001) 0.816 (0.004)
DN 0.880 (0.001) 0.800 (<0.001) 0.885 (0.002)

Discovery significance
NN 250 3le 3.7a
DN 49q 3.6a 5.06

Comparison of the performance of several learning techniques: boosted decision trees (BDT),
shallow neural networks (NN), and deep neural networks (DN) for three sets of input features:
low-level features, high-level features and the complete set of features. Each neural network was
trained five times with different random initializations. The table displays the mean area under
the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the
expected significance of a discovery (in units of Gaussian @) for 100 signal events and

1,000 £ 50 background events.

4.04.2017

Background rejection

Background rejection
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Summary of this exercise

® Deep NN found the features allowing to recognize the Higgs
boson better, than the skilled physicists with their whole
knowledge.

® This might allow in the future to automatize the physics
analysis....

® Does it mean unemployment for us?

® Problem: We must trust the Monte Carlo...

4.04.2017 M. Wolter, Machine learning 15




Deep learning for pattern recognition ‘ﬂ?
(a reminder)

Individual layers are trained to recognize the “features” - from simple to
more complex.

1

5 10 15 20 25 ...

ah weidl

Low weight

Sends a strong signal, when finding
a black square in the left upper corner.
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Deep Neural Network ‘ﬂ?
works like that...

Deep Neural Metwork
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Cutput Layer

edges combinations of edges object models
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Convolutional NN
Pattern recognition

Example: 1000x1000 image
IM hidden units
m) 1B parametersl!

Many connections... How to simplify the deep neural
network?

4.04.2017 M. Wolter, Machine learning 18
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Convolutional NN

Example: 1000x1000 image

IM hidden units

Filter size: 10x10
10M parameters

Just connect only local areas, for example 10x10
pixels.

Huge reduction of the number of parameters!

Learn multiple filters.  The same features might be found in different
places => so we could train many filters, each
recognizing another feature, and move them
over the picture.
E.g.: 1000x1000 image

100 Filters

Filter size: 10x10
10K parameters

LeCun et al. “Gradient-based learning applied to document recognition” IEEE 1998

4.04.2017 M. Wolter, Machine learning
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Pooling

Pooling — (in most cases max
pooling) the group of outputs for a
larger input area is replaced by a
maximum (or average) for this given
area:

 Data reduction,

* Lower sensitivity for the position of a
given feature.

Single depth slice
1 0o 2 3

4 6 6 8
3 1 1 0 3
1 2 2 4

A\
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Architecture of Alex Krizhevsky et al.

Softmax Output
e 8 layers total.

| SomoxOubut
e Trained on Imagenet Dataset
(1000 categories, 1.2M
e o+ P

3

training images, 150Kk test

images) Layer 5: Conv + Pool
e 18.2% top-5 error Layer 4: Conv
o Winner of the ILSVRC-
2012 challenge. -

Layer 2: Conv + Pool

Layer 1: Conv + Pool

Slide: R.

Input Image
P g Fergus
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First layer filters

Showing 81 filters of
11x11x3.

Capture low-level
features like oriented
edges, blobs.

Note these oriented edges are
analogous to what SIFT uses to
compute the gradients.

SIFT - scale-invariant feature transform, algorithm
published in 1999 roku by David Lowe.
4.04.2017 M. Wolter, Machine learning
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Top 9 patches that activate each filter
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the top 9 patches for
one filter.
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Few properties of Deep Neural Networks
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Figure 6.6: Empirical results showing that deeper networks generalize better when used
to transcribe multi-digit numbers from photographs of addresses. Data from Goodfellow
ot al. (2014d). The test set accuracy consistently increases with increasing depth. See
figure 6.7 for a control experiment demonstrating that other increases to the model size
do not vield the same effect.

http.://www.deeplearningbook.org
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Figure 6.7: Deeper models tend to perform better. This is not merely because the model is
larger. This experiment from Goodfellow «f ol (2014d) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is not
nearly as effective at increasing test set performance. The legend indicates the depth of
network used to make each curve and whether the curve represents variation in the size of
the convolutional or the fully connected layers. We observe that shallow models in this
context overfit at around 20 million parameters while deep ones can benefit from having
over 60 million. This suggests that using a deep model expresses a useful preference over
the space of functions the model can learn. Specifically, it expresses a belief that the
function should consist of many simpler functions composed together. This could result
either in learning a representation that is composed in turn of simpler representations (e.g.,
corners defined in terms of edges) or in learning a program with sequentially dependent
steps (e.g., first locate a set of objects, then segment them from each other, then recognize

them). http.//www.deeplearningbook.org
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Deep learning
Why deep learning

® Scales up for huge
amount of inputs

Deep learning

0
O
-
©
S
-
O
‘€
O
o

Amount of data

How do data science techniques scale with amount of data?
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Road Map ﬂ?
from Zihao Jiang presentation

Traditional Learning
Methods

Advanced ML Tools
CNN focus

Training on data (not MC!)

New Training Ideas

Punish for correlation

with some, poorly Learning without

modeled variables labels Gaussian Process

2017/12/4

Zihao Jiang
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ATLAS Simulation Preliminary
Anti-k, R=0.4, 150 GeV < pr <200 GeV

Tower Constituents
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Translated Azimuthal Angle ¢

Per pixel correlation between image
intensity and CNN output.

The four pixels at the core is highly

correlated with jet being a quark jet
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CNNs
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CNN as an entirely different approach than
building likelihood from high level quantities show
improvement of quark vs. gluon classification
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CNNs
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Event Classification:
Search for RPV SUSY gluino decays

O Image content = calo tower energy
O CNN outperforms typical classifiers

O 3-channel image (Ecal, Hcal, Track) further
boosts the performance

O NOTE: soft activity systematics missing

1.0

a

[

4

[}

2

=]

w

o

o

()]

2
—— CNN

0.2 A —— Log Weights

—— 3 Channel

® Physics Selections

0.0 T T T T
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

False Positive Rate

4.04.2017 M. Wolter, Machine learning 33




Learning from Data ‘ﬂ?
--Classification w/o Labeling

® A step even further is | |
classification w/o Mixed Sample 1 ) Mixed Sample 2

labeling (CWola, f ) |
T708.00000) OPO®0G | | EO®O®
https://arxiv.org/abs/170 GGG ®EG®®O
8.02949 OOE®G ::5
®O®®

® A classifier is trained to @@ @@@
distinguish sample 1 .@@@@

©EO
@EE

from sample 2 which are \ /
mixture of signal and
background with 0 1
different fractions
® Such a classifier is Classifier

optimal for distinguishing
signal from background
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Deep Neural Network for artists :)

DeepArt.io

“A Neural Algorithm of Artistic Style”, arXiv:1508.06576
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DeepArt.io
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The Automated HEP Physicist? ‘ﬂ?

® A few years from now our automaton could do on our behalf:

® Automatically determine the set of characteristics that distinguish particles
from the primary vertex from those from other vertices and automatically
classify particles based on this information.

® Automatically reduce particle event data into a smaller fixed set of numbers,
say N ~ 500 — which may be thought of as “pixelized images” — that can be
the basis of further analysis.

® Automatically classify these “images” into two sets: those that look like
simulated events and those that don't.

® Find more sets and classify the events according to MC classes.

Conclusions inspired by H.B.
Prosper “Deep Learning and

NG 9 )

bk Bavesian Methods”
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Deep Learning Software (few packages)

® Theano is a low-level library that specializes in efficient computation. You'll
only use this directly if you need fine-grain customization and flexibility.

® TensorFlow is another low-level library that is less mature than Theano.
However, it's supported by Google and offers out-of-the-box distributed
computing.

® Lasagne is a lightweight wrapper for Theano. Use this if need the flexibility of
Theano but don't want to always write neural network layers from scratch.

® Keras is a heavyweight wrapper for both Theano and Tensorflow. It's
minimalistic, modular, and awesome for rapid experimentation. This is our
favorite Python library for deep learning and the best place to start for
beginners.

® TMVAIroot is now interfaced to Keras (root 6.08)
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ATLAS Z - tau tau selection

® Data:

— mcl2/Ztautau.root - signal
— Powheg_ttbar.root - bckg

— Wenu.root - bckg

— Wmunu.root - bckg

— Wtaunu.root - bckg

— Zee.root - bckg

— Zmumu.root - bckg
® Variables:

preselection:
if(!(evtsel_is_dilepVeto > 0 && evtsel _is_tau > 0 &&
fabs(evtsel_tau_eta) < 2.47 && evtsel_is_conf_lep_veto == 1 &&
evtsel_tau_numTrack == 1 && evtsel lep_pt > 26 &&
fabs(evtsel_lep_eta) < 2.4 && evtsel_transverseMass < 70))
continue;

if (I( evtsel_is_oppositeSign>0 && evtsel is_mu>0 &&
evtsel_is_isoLep>0 )) continue,
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ATLAS Z - tau tau selection

® Variables used for training:

— evtsel _tau_et

— evtsel_dPhiSum

— evtsel _tau_pi0_n

— evtsel_transverseMass
— sSum_cos_dphi

® Spectator

— VIS _mass

® Program:

— TMVACIassificationMW.C i TMVACIassificationMW.h
Performs the basic training.
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ATLAS Z - tau tau selection ‘FE

Install root & TMVA
Get data and a sample program:

— http://nz14-46.4.ifj.edu.pl/cwiczenieATLAS/
Run a sample code in C++:
root -
.L TMVAClassificationMW.C++
TMVACIassificationMW t

t.Loop()
Modify it:

— Try to optimize the parameters of the selected method

— Try to remove or add some variables.

— Try to use individual variables, for example the variables used to build
sum_cos_dphi

— Use all the types of background use the weights WeightLumi
Zaaplikowac¢ wyuczony klasyfikator do danych (datal2/Muons.PhysCont.grpl4.root),
mozna sie wzorowac na przyktadzie TMVACIassificationApplication dostepnym na
stronie TMVA oraz zatgczonym przyktadzie TMVACIassificationApplicationMW.C.
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ATLAS Z - tau tau selection

Make such a plot for visible mass (doesn’'t need to be so nice).
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Figure 41: Distributions of variables observed in £ — 77 (u-had channel). From top-left: visible mass of r-lepton
system, T transverse momentum, sum of polar angles between T and missing- £y and between lepton and missing-Er,
transverse mass of the lepton-missing-Ey system, lepton transverse momentum and missing-Er.
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