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● Training - cross-validation.
● Optimalization of hyperparameters.
● Deep learning
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Supervised training
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Overtraining

Correct

Overtraining

● Overtraining – algorithm “learns” the particular events, not the 
rules.

● This effect appears for all ML algorithms.
● Remedy – checking with another, independent dataset.

test

training

STOP

Example of using Neural 
Network.

Training sample

Test sample

BUT WE USE JUST ONLY A PART OF DATA 

FOR TRAINING!!!
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How to train a ML algorithm?

● How to avoid overtraining while learning?

● Should we use one sample for training and another for validating?

● Then we increase the error – we use just a part of data for training.

● Second remark: to avoid ovetraining and find the performance of the trained 
algorithm we should use one more, third data sample to measure the final 
performance of the ML algorithm.

● How to optimize the hyperparameters of the ML algorithm (number of trrees 
and their depth for BDT, number of hidden layers, nodes for Neural Network)?
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Validation
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Cross-validation

● We have independant training sample L
n
 and a test sample T

m
. 

● Error level of the classifier                          built on the training sample L
n
 

● Estimator using "recycled data" (the same data for training and for error 
calculation) is biased.

● Reduction of bias: for example division of data into two parts (training & 
validation) we use just a part of information only.

● Cross-validation – out of sample L
n
 we remove just one event j, train 

classifier, validate on single event j. We repeat n times and get the estimator: 

● We get an estimator, which is unbiased (in limit of huge n), but CPU 
demanding, with bigger variation than e

T
. 
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Cross-validation

● Intermediate solution – v-fold cross-validation

● The sample is divided into v subsamples, v-1 of them we use for training, the 
one for validation. Then the procedure is repeated with other subsamples and 
the procedure is repeated v times. 

● Smaller CPU usage comparing to ross-validation.

● Recommended v ~ 10 .

● While choosing the classifier (for example tuning hyperparameters), we 
should choose the classifier, which gives the smallest classification error.W
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Walidacja krzyżowa

● 4-times folding

● Finding a dependence of CV from alpha (medical data)

● We can draw the mean and a standard deviation. In the next plot we draw the 
dependence for each folding. 

● As a result we can estimate an error of CV.
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https://www.slideshare.net/0xdata/top-10-data-science-practitioner-
pitfalls

Model performance
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 Train vs Test vs Valid
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Hyperparameter optimization

● Nearly each ML method has few hyperparameters (structure of the Neural Net 
etc).

● They should be optimized for a given problem.

● Task: for a given data sample find a set of hyperparameters, that the 
estimated error of the given method is minimized.

● Looks like a typical minimization problem (fitting like), but:

– Getting each measurement is costly

– High noise

– We can get the value of the minimized function (so our error) in the pont x 
of the hyperparameter space,  but we can't get the differential.
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Optimization of hyperparameters

● How to optimize:

– „Grid search” - scan over all possible values of parameters. 

– „Random search”

– Some type of fitting…
● Popular method is the „bayesian optimization”

– Build the probability model

– Take „a priori” distributions of parameters

– Find, for which point in the hyperparameter space you can maximally 
improve your model

– Find the value of error

– Find the „a posteriori” probability distribution

– Repeat
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How does it work 
in practice?

● Straight line fitting

 y(x, w) = w
0
 + w

1
x   fit to the data.

1) Gaussian prior, no data used

2) First data point. We find the likelihood 
based on this point (left plot)and 
multiply: priori*likelihood. We get the 
posterior distribution (right plot).

3) We add the second point and repeat 
the procedure.

4) Adding all the points one by one.

Remark: data are noisy.
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Starting point

Unknown function (with noise), four observations.
Where should we do the next costly probing?

See this tutorial

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf
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A posteriori distribution

The a posteriori distribution of possible functions, which could generate the 
observed data points.

A set of 
functions
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A posteriori functions 
– Gaussian Processes (GP)

These functions should be somehow parametrized, for example these 
could be Gaussian functions.
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Acquisition function

● Posterior GP (Gaussian Processes) give us the mean of GP functions μ(x) 
and their expected variation σ2(x).

– Exploration – searching for huge variation

– Exploitation – search for a smallest/greatest (depends on sign and 
convention) value of mean  μ(x)

● The acquisition policy has to balance these two approaches:

– Probability of Improvement (Kushner 1964):

• a
PI
(x) = Φ(γ(x))

– Expected Improvement (Mockus 1978)

– GP Upper Confidence Bound (Srinivas et al. 2010):

• a
LCB

(x) = μ(x) - κσ(x)
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These functions are quite similar...
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We choose next x 

u(x) – acqusition function 
(finding maximum)
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Dokonujemy próbkowania i powtarzamy procedurę...
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t=2 t=3

t=4 t=5
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Limitations

● Bayesian optimization depends on the parameters chosen

● On the acquisition function

● On the prior selected....

● It’s sequential.

● There are alternative methods, which can be done in parallel (like Random 
Search or Tree of Parzen Estimators (TPE) used by the HyperOpt package 
https://github.com/hyperopt/hyperopt).
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Implementations

● Python

– Spearmint https://github.com/JasperSnoek/spearmint

– GPyOpt https://github.com/SheffieldML/GPyOpt

– RoBO https://github.com/automl/RoBO

– Scikit-optimize https://github.com/MechCoder/scikit-optimize

● C++

– MOE https://github.com/yelp/MOE
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Articles

● Brochu, E., Cora, V. M., and De Freitas, N. (2010). A tutorial on bayesian 
optimization of expensive cost functions, with application to active user 
modeling and hierarchical reinforcement learning. arXiv preprint 
arXiv:1012.2599.

● Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and de Freitas, N. (2016). 
Taking the human out of the loop: A review of bayesian optimization. 
Proceedings of the IEEE, 104(1):148–175.

● Nice tutorial:

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slid
es/Ryan_adams_140814_bayesopt_ncap.pdf

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf
https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf
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Deep Learning
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1. What does “deep learning” mean?

2. Why does it give better results than other methods in pattern recognition, specha 
recognition and others?
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Short answer:
‘Deep Learning’ - using a neural network with many hidden layers
A series of hidden layers makes the feature identification first and processes 
them in the chain of operations:  feature identification→ further feature 
identification → ……. →selection

But NN are well known starting from 80-ties???

We always had good algorithms to train NN with one or two hidden layers.

But they were failing for more layers

NEW:  algorithms for training deep networks

            huge computing power
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W1 

W2 

W3 

f(x)

1.4

-2.5

-0.06

Activation function

How do we train a NN
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2.7

-8.6

0.002

f(x)

1.4

-2.5

-0.06

x =  -0.06×2.7 + 2.5×8.6 + 1.4×0.002  = 21.34 
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NN training
Inputs               Class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …
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Training data
Inputs               Class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …

Initialization with random weights
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Training data
Inputs               Class
1.4  2.7   1.9         0
3.8  3.4   3.2         0
6.4  2.8   1.7         1
4.1  0.1   0.2         0
etc …

Reading data
Processing them by network
Result compared with the true value

1.4 

2.7                                                    

1.9        0.8
0
Errror 0.8

The weights are modified. Modification
Based on this error.

We repeat many times, each time modifying the weghts
Training algorithms take care, that the error is smaller and smaller
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Remark

● If the activation function is non-linear, than a 
neural network with one hidden layer can 
classify any problem (fits any function). 

● There exists a set of weights, which allows to 
do that. However, the problem is to find it...
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How to identify the 
features?
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What is this neuron 
doing?
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Neurons in the hidden layers are the self-
organizing feature detectors

…

1

63

 1                5                10                 15                20                25  …

Huge weight

Small weight
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What can it detect?

…

1

63

 1                5                10                 15                20                25  …

Huge weight

Small weight

It sends a strong signal, when it finds 
a horizontal line in the top row of pixels, 
ignores anything else. 
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What can it detect?

1

63

 1                5                10                 15                20                25  …

Small weight

Sends strong signal, if a dark region in the left
upper corner is found.

…

Huge weight

…
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What feature should detect a neural network 
recognizing the handwriting?
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63

1

Vertical lines
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63

1

Horizontal lines
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63

1

Circles

And what about the sensitivity on
position of these features???
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Next layers can learn the higher level features

 
  

 
  

 
  etc …Detecting lines

in given places

 
  v

 
  

 
  

Higher level detectors

etc …
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Such an organised network makes 
sense...

Our brains probably work in a similar 
way
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Unfortunately, until recent years we didn’t
know how to train a deep network
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New method of training (basic info)
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New method of training (basic info)

Train this layer
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New method of training (basic info)

Train this layer

Then this
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New method of training (basic info)

Trenuj tę warstwę

Then this

Then this
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New method of training (basic info)

Train this layer

Then this

Then this

Then this
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New method of training (basic info)

Train this layer

Then this

Then this

Then this
At the end this
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New method of training (basic info)

Each hidden layer is an automatic feature 
detector

an auto-encoder
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An autoencoder neural network is an unsupervised 
learning algorithm that applies backpropagation, setting 
the target values to be equal to the inputs.

The aim of an autoencoder is to learn a representation (encoding) 
for a set of data, typically for the purpose of dimensionality 
reduction. 
If there is a structure in the data, than it should find features.
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Hidden layers are trained 
to identify features
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The last layer performs the actual 
classification
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An example – pattern recognition with 
KERAS and TensorFlow

● CIFAR10 small image classification. Dataset of 50,000 32x32 color training 
images, labeled over 10 categories, and 10,000 test images.
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Deep Neural Network

Training: 
~24 h on 12 core 
machine on our 
Cloud cluster.

200 epochs
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Results
Recognized as Really was
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Confusion matrix
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That’s all for today

Applet showing the performance of deep NN:

http://cs.stanford.edu/people/karpathy/convnetjs/

http://cs.stanford.edu/people/karpathy/convnetjs/
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Bootstrap

Unfortunately Polish...
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