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● Neural networks
● Bayesian Neural Networks
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Inspired by human brain

●Human brain:
– 1014 neurons, frequency 100 Hz
– Parallel processing of data (complex pattern recognition in 

100 ms –  10 steps only!!!)
– Learns on examples
– Resistant for errors and damaged neurons

●Neural Network:

– Just an algorithm, which might not reflect the way the bain is 
working.
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History
1938 N. Rashevsky, neurodynamics – neural networks as dynamic 

systems, recurrent networks;

1943 W. McCulloch, W. Pitts, neural networks=logic systems;

1958 F. Rosenblatt, perceptron, network as a function;

1973 Chr. von der Malsburg, self-orgnization in the brain;

1982    Kohonen, Self-Organizing Maps

... 
1986    backpropagation of errors, many application!
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What a Neural Network is? 
 Neural Network – a mathematical model which is composed out of 

many functions (typically nonlinear)
 Tasks:

 Event classification – background vs signal classification
 Regression – approximation of a real function

 Two types of networks:
 Feed forward – information is sent from input layer to output 

without any loops
 Recurrent – recurrent loops.

     Learning: 

 supervised
 unsupervised

Feed-forward Recurrent
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What are they used for?

● Expert systems
● Pattern recognition
● Predictions (metereology, stock market...)
● In elementary particle physics:

– Data analysis (mostly event selection)

– Trigger systems – times ~ms (dedicated electronics, computer 
farms)
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Neuron – the basic element

●Function of a weighted average of inputs 

●Function f is called the activation function

Inputs Outputs
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Typical activation functions
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Training a single neuron

● Xi – input data

● Y  - output value
● Z   - the true output value (supervised 

training!)
 TASK – minimize the loss function: 

Minimize:
 New set of weights:

  - learning speed

ADALINE 
(Adaptive Linear Network)

yz 
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Neuron is trained on examples
Supervised learning – the proper answers are known
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Speed of learning

● To small

● To big
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What can a single neuron (perceptron) 
do?

• Perceptron (with a step activation 
function) can divide a plane by a 
straight line (in general: division by 
a hyperplane in the n-dimensional 
space).

• Points above the line are classified 
as “1” (signal) and below as “0” - 
background.
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AND OR

XOR

What the perceptron can not do?

• A single perceptron can’t separate 
the linearly not separable classes, 
for example the XOR function.

• The discovery of these limitations 
(1969) stopped the development of 
Neural Networks for some time.

Applet perceptron



14.03.2018 12M. Wolter, Machine Learning

So, maybe a network of perceptrons?

● Feed forward network – the 
information propagates from 
input to output.

● The net is the sum of many 
activation functions  (in general 
non-linear)

● A network complicated enough 
can reproduce any function. 

x1 x2 xn…..

1st hidden 
layer

2nd hidden
layer

Output layer

Input layer
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Structure
Types of

Decision Regions
Exclusive-OR

Problem
Classes with

Meshed regions
Most General
Region Shapes

Single-Layer

Two-Layer

Three-Layer

Half Plane
Bounded By
Hyperplane

Convex Open
Or

Closed Regions

Abitrary
(Complexity

Limited by No.
of Nodes)

A

AB

B

A

AB

B

A

AB

B

B
A

B
A

B
A

What a network can do?
(step activation function) applet general1
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How to train a multilayer network?

● Minimize the loss function by choosing a set of weights :

● Problem – how to correct the weights in the deeper layer, while 
comparing only outputs on the last layer? 

● This problem stopped the development of Neural Networks for 30 
years, until 80-ties. 

● Solution - the backpropagation method. Errors  t-n(x,)  are 
propagated backward through the net using the actual weights. 

 
i

iiN xntR 21 )],([)( 
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Typical training procedure
● Two data samples: for training and for tests.
● 2=(z-y)2 is calculated for both samples and compared 

to avoid overtraining. 
● Backpropagation: difference between the expected and 

calculated value on output y-f(x,w) is propagated 
backward through the net using the actual weights: 

where  ρ is a speed of learning, t
j
 the true value on the 

output j, y
j
 calculated by the net, and x

i
 is an actual value 

on the neuron i in the layer preceding the output layer.
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Finding the minimum

● We never know, whether the global or a local minimum of the loss function  
2=(z-y)2 was found.

● Mechanisms preventing stopping in a local minimum:

– Using random initial weights, repetition of training,

– Addition of noise, so the minimizing algorithm can jump out of a local 
minimum (jittering).
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Network pruning
Algorithms removing the less important connections

Simplifying the net they increase the speed
Avoid overtraining

Alternative – gradually build the net adding new neurons (or layers)until it 
reaches the optimal size.

Neural network prunned using the Optimal Brain Surgeon algorithm. The old package 
SNNS is used.
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A Strategy for Discovering a Low-Mass Higgs Boson at the 
Tevatron

Pushpalatha Bhat, Russell Gilmartin and Harrison B. Prosper

FERMILAB-Pub-00/006

HT – sum of transverse energies of 
all tracks.

Example: 
Prediction, how many events are needed to 

discover (that time hypothetical) Higgs 
boson at Fermilab.
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The trigger system at the H1 experiment at 
DESY (1996) 

● The trained NN is fast – can be used in the trigger 
system.

● Secend trigger selection step (L2) – hardware 
implementation of the NN.

● Implementation on parallel processors (CNAPS from 
Adaptive Solutions).

● Decision time – (L1 hardware – 2.3 µs,  L2 Neural 
Network - 20 µs, L3 microprocessors - 800  µs).

J. K. Kohn et al, 
Realizaton of a second level neural
network trigger for the H1 experiment 
at HERA, 
Nucl. Instrum. Meth. A389 (1997)
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Neural network for signal selection in the Higgs 

searches at ATLAS experiment 
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Identification of t quarks at CDF 
experiment
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Radial Base Functions (RBF)

● A neural network that uses radial basis functions as activation functions. The 
output of the network is a linear combination of radial basis functions of the 
inputs and neuron parameters. Formulated in a 1988 paper by Broomhead 
and Lowe.

● Neuron in a hidden layer – the radial function, which is non-zero around the 
center c only:

f
i
( x ) = f

 i
 ( | | x − c | | )  - a radial base function. 

Applet rbf
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RBF functions
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Something else... 
Non-linear PCA

 (Principal Component Analysis)

Linear PCA:
● Dimensionality reduction (here from 2 

dimensions to 1)in such, that a loss 
of information is minimized.

● Finds the orthogonal base of 
covariant matrices, eigenvectors with 
smallest eigenvalues are skipped.
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What to do with a non-linear example?

●How to transform 
(in optimal way) 
into 1-dim?
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Non-linear PCA 

The network is trained by giving the same vectors on 
input and output. Then it is cut by half.
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Result – transformation into 
1 dimension

●Non-linear 
transformation.
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Neural networks approximating the proton 
structure functions

● Structure functions are measured in various 
experiment and in various kinematical ranges. 
Taking all the available data and parametrizing 
them we can get the parametrized structire 
functions. 

● NNPDF collaboration uses Neural Networks for 
approximation of the structure functions (or the 
distribution of partons in proton): 

– unbiased estimator (we do not choose the 
approximating function),

– we do not histogram events (better use of 
available information).

● Inclusive cross-section for electron scattering on protons can be parametrized 
by the structure functions  F

1
(x,Q2) and  F

2
(x,Q2), where x – fraction of 

momentum carried by a parton, Q2 – the four-momentum transfer. 
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NNPDF – structure function approximation
● Create many replicas of data

All available data are used to create 
pseudo-data: replication of means, errors, 
correlations.

● Create the probability densities of 
partons

Fitting of neural networks, one for each 
data replica.

● Statistical reliability

A set of trained NN is used to reproduce 
the observables, including errors and 
correlations.

Remark: the result is obtained from many 
neural networks – an error estimation.

DATA

Trained neural 
networks
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Machine learning vs Bayesian 
learning 

Machine learning
    Teaching the function y = f(x) giving training data T = (x, y) = (x,y)1, (x,y)2,…

(x,y)N and bonds by giving a class of this function.

    Bayesian learning

    For each function f(x) from the function space F we find an a posteriori 
probability p(f |T) using the training sample  T= (x, y). 

     In the bayesian learning we DO NOT find the one, best function, but we 
use many functions weighted by their probability.   

Probability a posteriori – probability calculated using the results of the 
experiment.

Training sample T = (x, y): a set of input vectors x and results y.
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Machine and bayesian learning

Machine learning

We chose one function (or a 
value of a parameter describing 
the function). 

Bayesian learning

Each function (or a parameter 
value) is given some probability 
(weight).

Maximum

Value chosen 
W p(w)

p(w)

p(w)

p(w)

p(w)

p(w)
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Implementation of bayesian networks:

Many neural networks. 

Having many NN we can get 
the weighted mean or he most 
probable network and also the 
estimation error

Instead of choosing a single set of weights 
describing the NN we should find the probability 
density for the entire space of weights.

Free software:
Radford Neal, http://www.cs.toronto.edu/~radford/fbm.software.html

NN1

NN2

NN3

NNM

X

y1

y2

y3

yM

)(xyay
i

ii




C.M. Bishop 
“Neural Networks for Pattern Recognition”, 
Oxford 1995

http://www.cs.toronto.edu/~radford/fbm.software.html
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Example of BNN
How does the bayesian network with 8 neurons works for different amount 
of data?  

● Data generated using function:                                                                  
with a gaussian noise (sigma = 0.1)

● 400 neural networks, from the distribution of answers we get:            
median and 10% Qnt i 90% Qnt (10% of networks gave answers below the 
lower blue line and 10% above the upper line).

● When only 10 training points used, we got much higher errors (as they 
should be). 

y=0.3+0.4 x+0.5sin (2.7x)+1.1 /(1+x2
)
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Example – search for a single top quark in 
D0 experiment

Analysis using:
Boosted Decision Trees (BDT)
and bayesian neural networks

D0 Collaboration,
PRD 78 012005, 2008

Similar 
performance of
BDT and BNN
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Exercise

● To the last example of “chess board” classification add also Neural Network 
(MLP – Multilayer Perceptron)
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What I did:

● Added MLP to the training script: 

factory.BookMethod( dataloader, ROOT.TMVA.Types.kMLP, "MLP", "H:!
V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+12,N+12:TestRa
te=5:!UseRegulator" )
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Challenge for machine learning experts

https://www.kaggle.com/c/higgs-boson

Open Higgs challenge!!!!!!!!!!!!!!

https://www.kaggle.com/c/higgs-boson


Machine Learning and HEP
 90’ies - Neural Nets used by  LEP experiments
 BDT (Adaboost) invented in 97
 Machine Learning used extensively at D0/CDF  (mostly BDT, also Neural 

Nets) in the 00’ies
 Last years – mostly BDT built in TMVA ROOT package (popular among 

physicists). Neural Nets and other techniques treated as obsolete.

 Not much work within LHC experiments on studying possible better 
MVA techniques.

 Enormous development of Machine Learning in the outside world in 
the last 10 years (“Big Data”, “Data Science”, even “Artificial 
Intelligence” is back).

 We have to catch up and learn from computer scientists:

          Make an open Higgs challenge!

 Task: identify H->tau tau signal  out of background in the simulated 
data.



How did it work ?

●  People register to Kaggle web site hosted https://www.kaggle.com/c/higgs-
boson . (additional info on https://higgsml.lal.in2p3.fr).

● …download training dataset (with label) with 250k events

● …train their own algorithm to optimize the significance (à la s/sqrt(b))

● …download test dataset (without labels) with 550k events

● …upload their own classification

● The site automatically calculates significance. Public (100k events) and 
private (450k events) leader boards update instantly. (Only the public is 
visible)

● 1785 teams (1942 people) have participated 

● most popular challenge on the Kaggle platform (until a few weeks ago)

● 35772 solutions uploaded

Funded by: Paris Saclay Center for Data Science, Google, INRIA



Final leaderboard

7000$

4000$

2000$

HEP meets ML award
XGBoost authors
Free trip to CERN

Best physicist



The winners
● See 

http://atlas.ch/news/2014/machine-learning-wins
-the-higgs-challenge.html

● 1 : Gabor Melis (Hungary) software developer 
and consultant : wins 7000$. 

● 2 : Tim Salimans (Neitherland) data science 
consultant: wins 4000$

● 3 : Pierre Courtiol (nhlx5haze) (France) ? : 
wins 2000$

● HEP meets ML award: (team crowwork), Tianqi 
Chen (U of Washington PhD student in Data 
Science) and Tong He (graduate student Data 
Science SFU). Provided XGBoost public 
software used by many participants. 

?

htps://github.com/dmlc/xgboost



Rank distribution after bootstrap

! Gabor clearly better 

David Rousseau    HiggsML visits CERN, 19th May 2015

rank 1

rank 9rank 8rank 7

rank 6rank 5rank 4

rank 3rank 2

Distribution of rank of participant of rank i after 1000 bootstraps
of the test sample.



What did we learn from ML experts?

 Very successful satellite workshop at NIPS (on of the two major 
Machine Learning conferences) in Dec 2014 @ Montreal:

https://indico.lal.in2p3.fr/event/2632/

● 20% gain w.r.t. to untuned Boosted Decision Tree from the 
TMVA package

● Deep Neural Nets rule (but marginally better than BDT) 
● Ensemble methods (random forest, boosting) rule 
● careful cross-validation - very (human) time consuming 
● ...but this could be automatized! 
● Complex software suites using routinely multithreading, etc… (e.g. 

XGBoost)



Deep neural network
● Hierarchical feature extraction – first build abstract objects, than find dependencies 

between them.

● Deep neural network (DNN)- an artificial neural network with multiple hidden layers of 
units between the input and output layers.

● Extra layers - composition of features from lower layers,  potential of modeling complex 
data with fewer units than a similarly performing shallow network.

Challenge winning

Gabor's deep neural 

network

(from Gabor's presentaton)

Remark:
Few years ago some 
experts claimed neural 
networks are an obsolete 
tool :)



 Automatic optimization of hyperparameters

● Manual optimization of NN (or any other method) is time consuming. 

● Fortunately the Bayesian optimization methods can rival and surpass human 
domain experts in finding good  hyperparameter  settings. 

● SMAC, SPEARMINT, TPE (and others) are doing that with great success: 
http://www.cs.ubc.ca/~hutter/papers/13-BayesOpt_EmpiricalFoundation.pdf



Backup



Analiza podczas praktyk 
studenckich

● Próbowaliśmy powtórzyć HiggsChallenge podczas praktyk studenckich.

● Udało się za pomocą TMVA (konwersja danych do formatu root) oraz 
pakietu XGBoost

● Optymalizacja parametrów XGBoost za pomocą programu hyperopt
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Bayesowskie sieci neuronowe

● Powinniśmy liczyć średnią ze wszystkich możliwych sieci neuronowych...

● Ponieważ sieć neuronowa jest funkcją nieliniową, można posłużyć się 
rozwinięciem w szereg wokół zestawu parametrów dającym sieć o 
najmniejszej funkcji straty, czyli takiej, jaką otrzymalibyśmy trenując klasyczną 
sieć neuronową [Bishop].

● Użycie metod Monte Carlo. Musimy wygenerować zbiór punktów 
w przestrzeni wag według pewnej gęstości prawdopodobieństwa. 
Stosowanym rozwiązaniem jest ich generacja z użyciem symulacji Monte 
Carlo posługującej się łańcuchami Markowa (ang. Markov Chain Monte Carlo, 
MCMC) [O’Neil].
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Bayesowskie sieci neuronowe

Każda sieć opisana przez wektor parametrów w.

Dla danych treningowych T= {y,x}, gęstość prawdopodobieństwa w punkcie  w 
dana jest przez:

                                                                 równanie Bayesa 

                                                                 p(w) – prawdopodobieństwo               
                                                                 a priori, musi być wybrane wcześniej

● Odpowiedzią jest średnia po wszystkich sieciach neuronowych 
(wartościach w):

● Obliczanie średniej: próbkowanie z użyciem łańcuchów Markowa.

● Zalety:

– Otrzymujemy błąd estymowanej funkcji,

– Zwiększona odporność na przetrenowanie i fluktuacje.

p(w ,T )=
p(T ,w) p(w)

p(T )

ȳ (x)=∫ f (x , w) p(w ,T )dw f (x ,w)−neural network
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