Nadprzewodniki w KFCS AGH

dr R. Zalecki

prof. G. Gritzner Institute for Chemical Technology of Inorganic Materials Johannes Kepler University, Linz, Austria

prof. Š. Chromik Department of Cryoelectronics, Institute of Electrical Engineering, SAS, Bratislava, Slovak Republic

AGH

Slovak Academy of Sciences

Czym się zajmujemy – nadprzewodniki

REBaCuO 123 kompozyty:

(BiPb)SrCaCuO 2223 2212

(TIPb)(SrBa)CaCu 2223 T_c =115 K, 1223 T_c =120 K

(TIPb)(SrBa)(CaGd)CuO 1212 T_c =105 K

(TIRe)BaCaCuO 1223

Komercyjne taśmy nadprzewodnikowe 1G i 2G

Matody pomiarowe

- oporność elektryczna a.c. vs T i H
- podatność magnetyczna a.c. vs T i H
- namagnesowanie (met. wibracyjna) vs T i H
- PPMS (Physical Property Measurement System)
- EPR pasmo X i K
- XRD
- XRF

Diagram fazowy

Szerokość przejścia oporowego

 $\Delta T = T_{90\%} - T_{10\%}$

 $(Tl_{0.6}Pb_{0.24}Bi_{0.16})(Sr_{0.9}Ba_{0.1})_2Ca_2Cu_3O_v$

Szerokość przejścia oporowego

Szerokość przejścia - 1G tape (BiSCO)

Pola nieodwracalności

lub stan szkła worteksowego

stan szklisty

- różne zachowanie w ZFC i FC
- nieeksponencjalna zależność namagnesowania od czasu
- linia nieodwracalności de Almeida-Thouless

$$H_{irr} = H_0 \left(1 - \frac{T}{T_{c0}} \right)^n$$
 ***n* = 3/2**

K.A. Müller, M. Takashige, G. Bednorz, *Phys. Rev. Lett.* **58** (1987) 1143.

J.R.L. de Almeida, D.J. Thouless, *J. Phys. A* **11** (1978) 983.

Y. Yeshurun, A.P. Malozemoff, *Phys. Rev. Lett.* **60** (1988) 2202

Pola nieodwracalności

 $TI_{0.6}Pb_{0.24}Bi_{0.16}Sr_{1.8}Ba_{0.2}Ca_{2}Cu_{3}O_{y}$ warstwa na monokrysztale LaAlO₃

(TI_{0.5}Pb_{0.5})Sr₂(Ca_{1-x}Gd_x)Cu₂O_z x=0.1; 0.2; 0.3

Pola nieodwracalności

1G tape (BiSCO)2G tape (REBCO)

Prądy krytyczne

metoda transportowa taśma 2G

metoda Bean'a

Prądy krytyczne

$(Bi_{1-x}Pb_x)_2Sr_2Ca_2Cu_3O_y$ (x = 0.2 and 0.4)

$$J_{\rm c} = J_{\rm c0} \left(1 - \frac{T}{T_{\rm c}} \right)^n$$

metoda Bean'a taśma 2 G

Prądy krytyczne metoda transportowa: *J*(*H*)

- Fluktuacje nadprzewodzące w NWT: wysoka anizotropia, bardzo mała $\boldsymbol{\xi}$
- podatność magnetyczna, ciepło właściwe, przewodność cieplna i elektryczna
- Fluktuacje: krytyczne vs Gaussowskie
- badanie wewnętrznych własności NWT np.: słabych złącz międzyziarnowych
- wyznaczanie parametrów mikroskopowych (np. ξ , τ)
- wyjaśnienie mechanizmów przejścia do stanu nadprzewodzącego

Wykładniki krytyczne przejścia nadprzewodzącego

Tl_{0.6}Pb_{0.24}Bi_{0.16}Sr_{1.8}Ba_{0.2}Ca₂Cu₃O_y warstwa uporządkowana na LaAlO₃

W.M. Woch, M. Chrobak and A. Kołodziejczyk, Acta Phys. Pol. A 118 (2010) 389.

 $(Tl_{0.5}Pb_{0.5})Sr_2(Ca_xGd_{1-x})Cu_2O_y$ (x=0.1)

 $T_{\rm c} = 101$ K, $T_{\rm cg} = 103$ K

W.M. Woch, R. Zalecki, M. Chrobak, A. Kołodziejczyk and G. Gritzner, Acta Phys. Pol A. 121 (2012) 789.

 $(Tl_{0.5}Pb_{0.5})Sr_2(Ca_xGd_{1-x})Cu_2O_y$ (x=0.1)

Pole pełnej penetracji

 $(Tl_{0.5}Pb_{0.5})(Sr_{0.85}Ba_{0.15})_2Ca_2Cu_3O_z\ warstwa\ na\ Ag$

Pole pełnej penetracji

 $(Tl_{0.5}Pb_{0.5})(Sr_{0.85}Ba_{0.15})_2Ca_2Cu_3O_z\ warstwa\ na\ Ag$

 $H_{\rm p} = H_{\rm p0} \exp\left(-\frac{T}{T^*} + \beta\right)$

Pole pełnej penetracji (Tl_{0.5}Pb_{0.5})Sr₂(Ca_{1-x}Gd_x)Cu₂O_z x=0.2

Głębokość wnikania

Model dwucieczowy

Dziękuję za uwagę!