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Gauge Bosons: Mediators of the fundamental forces

Spin-1 particles, three spin states:
sz = −1, 0,+1 (3 dof)

In high-energy scattering, described by
a Lorentz 4-vector:
Aµ ≡ (A0,A1,A2,A3) (4 dof)

Gauge condition is added to
the Lagrangian to remove the
unphysical dof in calculations

Massive gauge boson (3 dof):
2 transverse and 1
longitudinal states (helicity,
λ = ±1, 0)

Massless gauge boson (2
dof): 2 transverse states
(Helicity, λ = ±1)
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Motivation

Studying weak boson polarization is a probe of gauge theory and EWSB
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Source: ATLAS Collaboration, arXiv:2402.16365

Extraction of gauge boson helicities is difficult but affects the kinematics of their
decay products
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Motivation (continued)

When gauge bosons interact, their polarization states interfere

=
∑
λ

W ∗
λ

q

q′

f

f ′

W ∗

q

q′

f

f ′

Unpolarized amplitude = sum over amplitudes of polarized weak bosons

Munpol =
∑

λ=0,±1,S

Mλ =
∑

λ=0,±1,S

Jµ
in ΠλJ

ν
out (1)

|Munpol|2 =
∑

λ=0,±1,S

|Mλ|2︸ ︷︷ ︸
incoherent terms

+
∑
λ̸=λ′

MλM′
λ︸ ︷︷ ︸

interference terms

(2)

Predictions assume that interference between different helicity states is negligible

In general, interference is not guaranteed to be negligible

Ensuring gauge invariance requires keeping track of scalar polarization (λ = S)
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Goal and Outline

Main Goal:

1 To investigate the interference effects

2 To explore the condition when it is negligible

Outline:

1 Introduce the relevant tools/expressions

2 Construct the analytical structure of the interference

3 Perform power counting of interference terms

4 Find the conditions under which the interference is minimized

5 Numerical case studies of interference at the matrix-element and cross section levels
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Propagators

Unpolarized propagator = the sum over propagators for each polarization state

= Σλ

W Wλ

Unpolarized propagator: 2

Πµν =
−i

DW (q2)

[
gµν −

(
1− ξ

DW (q2, ξ)

)
qµqν

]
=

i

DW (q2)

∑
λ=0,±1,S

ηλϵµ(λ)ϵ
∗
ν(λ)

=
∑

λ=0,±1,S

Πλ
µν (3)

where, DW (q2) = q2 − M̃2
W , DW (q2, ξ) = q2 − ξM̃2

W , M̃2
W = M2

W − iΓWMW

2η0 = η±1 = 1, ηs = −1
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Propagators for W boson in unitary gauge (ξ → ∞)

Unpolarized propagator:

Πµν =
−i

DW (q2)

(
gµν −

qµqν

M̃2
W

)
(4)

Transverse propagator sum (λ = ±1):

ΠT
µν =

i

DW (q2)

∑
λ=±1

ηλϵµ(λ)ϵ
∗
ν(λ) =

i

DW (q2)
(−gµν −Θµν) (5)

Longitudinal propagator (λ = 0):

Π0
µν =

i

DW (q2)

(
Θµν +

qµqν
q2
W

)
(6)

Scalar propagator(λ = S):

ΠS
µν =

i

DW (q2)

(
qµqν
q2
W

− qµqν

M̃2
W

)
(7)
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Matrix elements

polarized matrix elements have special “polarized” propagators

polarized matrix elements can otherwise be built from usual Feynman rules

=
∑
λ

W ∗
λ

q

q′

f

f ′

W ∗

q

q′

f

f ′

M =
∑

λ=0,±1,S

Mλ =
∑

λ=0,±1,S

Jµ
in Πλ

µν Jν
out (8)
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Matrix elements (continued)

=
∑
λ

W ∗
λ

q

q′

f

f ′

W ∗

q

q′

f

f ′

Matrix elements for polarized propagators:

Munpol = − i

(
G − Q

M̃2
W

)
; Mλ=T = −i(G + ϑ) ;

Mλ=0 = i

(
ϑ+

Q
q2

)
; Mλ=S = i

(
Q
q2
− Q

M̃2
W

)
;

where, G = 1
DW (q2)

Jµ
in gµνJ

ν
out; ϑ = 1

DW (q2)
Jµ
in ΘµνJ

ν
out; Q = 1

DW (q2)
Jµ
inqµqνJ

ν
out
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Interference

Interference in unitary gauge:

I = |Munpol|2 −
∑

λ=T ,0,S

|Mλ|2 =
∑

λ̸=λ′, λ=T ,0,S

M∗
λMλ′

= − 2|ϑ|2 − 2Re(G∗ϑ)− 2

M̃2
W

Re(G∗Q)− 2

q2
Re(Q∗ϑ)

+
2M2

W (q2 −M2
W − Γ2

V )

q4|M̃2
W |2

|Q|2 (9)

Partial cancellations occur at squared matrix element level

Even in the on-shell limit, the interference remains non-zero
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Some nice analytical expressions

For W momentum, qµ = (EV , |q⃗| sin θV cosϕV , |q⃗| sin θV sinϕV , |q⃗| cos θV ),
Θµν(θV , ϕV ) is given by:

Θµν =


−1 0 0 0
0 cos2 ϕV sin2 θV cosϕV sin2 θV sinϕV cos θV cosϕV sin θV
0 cosϕV sin2 θV sinϕV sin2 θV sin2 ϕV cos θV sinϕV sin θV
0 cos θV cosϕV sin θV cos θV sinϕV sin θV cos2 θV


(10)

Also we can decompose Θµν in a nice way:

Θµν =
(n · q)

(n · q)2 − q2n2

[
−nµqν − qµnν +

q2

(n · q)nµnν +
n2

(n · q)qµqν
]

(11)

The choices of nµ are frame dependent: nµ = (1, 0⃗)︸ ︷︷ ︸
time−like

or (0,−q̂)︸ ︷︷ ︸
space−like

or (1,−q̂)︸ ︷︷ ︸
light−like

Contractions of nµ and qµ with Jν
in and Jν

out generate the structures Θµν and Q
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Case studies: ud̄ → W ∗g → τντg

u

d̄

W+∗

ντ

τ+gu

d̄

W+∗

ντ

τ+

g

(a) (b)

Incoming current: Jµ
in = Dµ

in + Uµ
in

Dµ
in = v̄R(pd)

(
−igγρT a

ij

)︸ ︷︷ ︸
Quark-gluon vertex

ϵ∗ρ(k)

(−i/pb

p2
b

)
︸ ︷︷ ︸

Fermion propagator

(
− ig√

2
γµPL

)
︸ ︷︷ ︸

W-u-d vertex

uL(pu), (12)

Uµ
in = v̄R(pd)

(
− ig√

2
γµPL

) (
i/pa

p2
a

) (
−igγρT a

ij

)
ϵ∗ρ(k) uL(pu) (13)
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Case studies: ud̄ → W ∗g → τντg (continued)

u

d̄

W+∗

ντ

τ+gu

d̄

W+∗

ντ

τ+

g

(a) (b)

Outgoing currents:

Jν
out(τ

+
R νL) = ūL(pν)

(
− ig√

2
γνPL

)
vR(pτ ) (14)

Jν
out(τ

+
L νL) = ūL(pν)

(
− ig√

2
γνPL

)
vL(pτ ) (15)

13



Case studies: ud̄ → W ∗g → τντg (continued)

u

d̄

W+∗

ντ

τ+gu

d̄

W+∗

ντ

τ+

g

(a) (b)

Matrix elements:

Munpol = − i(G − Q); Mλ=T = −i(G + ϑ) ; (16)

Mλ=0 = i

(
ϑ +

Q
q2

)
; Mλ=S = i

(
Q
q2
− Q

M̃2
W

)
(17)
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Case studies: ud̄ → W ∗g → τντg (continued)

Total incoming current is orthogonal to the W momenta for mu, md = 0:

Jµ
inqµ = (Dµ

in + Uµ
in)qµ = 0

Q term:

Q = QU +QD = (Dµ
in + Uµ

in)qµ qβJ
β
out = 0

Theta term:

ϑ ∝Jµ
in Θµν Jν

out

∝
[
−Jµ

innµqνJ
ν
out − Jµ

inqµ nνJ
ν
out +

q2

(n · q)J
µ
innµnνJ

ν
out +

n2

(n · q)J
µ
inqµ qνJ

ν
out

]
̸= 0

Matrix elements reduce to:

Munpol = −iG ; Mλ=T = −i(G + ϑ) ; Mλ=0 = iϑ ; Mλ=S = 0

Interference reduces to:

IW+1g = −2|ϑ|2 − 2 Re(G∗ϑ) = −2 Re[(G + ϑ)∗ϑ] ̸= 0 (18)
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Power counting of Interference

Naive scaling with hard scattering energy in partonic frame

Assuming that W ∗ and g are produced at wide angles and at high pT scale:

Eg ,EW ∼ Eu,Ed =
√
ŝ/2

Energy scale dependence:

uL(pu) ∼
√
Eu

pa/b ∼
√

Eu/d Eg

γµ,PL/R ∼ E 0

T a
ij , ϵ(k) ∼ E 0
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Power counting of Interference(continued)

Munpol(νLτ
+
R ) ∝

√
Eν

√
Eτ

DW (q2)
, Munpol(νLτ

+
L ) ∝

√
Eν

√
Eτ

DW (q2)

mτ

Eτ
(19)

Mλ=T (νLτ
+
R ) ∝

√
Eν

√
Eτ

DW (q2)

E 2
W

E 2
W − q2

(
1 +

m2
τ

EWEτ

)
(20)

Mλ=T (νLτ
+
L ) ∝

√
Eν

√
Eτ

DW (q2)

E 2
W

E 2
W − q2

mτ

Eτ

(
1 +

Eτ

EW

)
(21)

Mλ=0(νLτ
+
R ) ∝

√
Eν

√
Eτ

DW (q2)

E 2
W

E 2
W − q2

(
m2

τ

EWEτ
+

q2

E 2
W

)
(22)

Mλ=0(νLτ
+
L ) ∝

√
Eν

√
Eτ

DW (q2)

E 2
W

E 2
W − q2

(
mτ

EW
+

mτ

Eτ

q2

E 2
W

)
(23)
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Power counting of Interference(continued)

In high energy limit (mτ = 0), helicity configuration for νLτ
+
L is suppressed

Mλ=T (νLτ
+
L ), Mλ=0(νLτ

+
L ), IW+1g

pol (νLτ
+
L )

mτ→0∼ 0

Energy dependence of matrix elements and interference for helicity state νLτ
+
R :

Mλ=T (νLτ
+
R )

mτ→0∼
√
Eν

√
Eτ

DW (q2)

E 2
W

E 2
W − q2

(24)

Mλ=0(νLτ
+
R )

mτ→0∼
√
Eν

√
Eτ

DW (q2)

E 2
W

E 2
W − q2

q2

E 2
W

(25)

Munpol(νLτ
+
R )

mτ→0∼
√
Eν

√
Eτ

DW (q2)
(26)

Contribution of longitudinal state decreases with increase of W energy
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Power counting of Interference(continued)

Energy scale dependence of ratio:

RW+1g
pol int ≡

IW+1g
pol (νLτ

+
R ) + IW+1g

pol (νLτ
+
L )

|Munpol(νLτ
+
R )|2 + |Munpol(νLτ

+
L )|2

mτ→0∼ E 4
W

(E 2
W − q2)2

(
q2

E 2
W

)
∼ q2

E 2
W

[
1 +O

(
q2

E 2
W

)]2
(27)

In high energy limit (mτ → 0), interference is suppressed with increasing EW
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Numerical analysis of Interference: |M|2 vs
√

q2 plots

(a) (b)

Peak is around mW ≈ 80 GeV: |M|2 ∼ 1
|DW (q2)|2 ∼

1
(q2−m2

W
)2+(ΓWmW )2

√
s : 250 GeV→ 1000 GeV; I : O(10%)→ O(5%)
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Numerical analysis of Interference: Cross section plot

Results after integration over whole
phase space: σλ = 1

N

∫
dΦ |Mλ|2

Interference:

IW+1g = −2|ϑ|2︸ ︷︷ ︸
term1

− 2 Re(G∗ϑ)︸ ︷︷ ︸
term2

= − 2 Re[M∗
λ=TMλ=0]

For low value of pTmin, Abs[term 1] >
Abs[term 2]

For high value of pTmin =⇒ large
EW =⇒ Interference is small
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Conclusion

Study of helicity polarized vector boson is an important probe to understand the
gauge theory and EWSB

We introduce some tools (Θ-decomposition) that simplifies interference structures
and can be useful for other multiboson processes

In practice, for LHC experiments, the center-of-mass energy is high enough that
fermions can be treated as massless, which leads to the dominance of particular
helicity processes and makes interference negligible
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Thank You



Back up slides



Back up slides

Field decomposition:

Aµ(x) =

∫
d3k

(2π)32Ek

4∑
λ=0

[
εµ(k, λ)a(k, λ)e ik·x + ε∗µ(k, λ)a†(k, λ)e−ik·x

]
. (28)
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Recap of Gauge Symmetry

Lagrangian of photon field:

L = −1

4
FµνFµν where Fµν = ∂µAν − ∂νAµ (29)

Gauge transformation:

Aµ → A′
µ = Aµ + ∂µα(x) (30)

Gauge symmetry:

F ′
µν =∂µ(Aν + ∂να)− ∂ν(Aµ + ∂µα) = Fµν (31)

Lagrangian is invariant under this transformation for different choices of α

Gauge invariance: Redundancy of the system
=⇒ each choice of α←→ same physical state
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Gauge Fixing

Gauge invariance: several field configurations describe the same physical state

Gauge fixing: Selects one suitable field configuration, making the theory
consistent and the propagator well defined

It is implemented by adding an extra unphysical term to the Lagrangian:

LGF = − 1

2ξ
(∂µA

µ)2 (32)

Gauge parameter ξ is a unphysical parameter, physical observables are
independent of ξ

For massive gauge bosons, gauge fixing introduces unphysical particles like
Goldstone boson: Goldston (ξ) + Scalar (ξ) → Physical observable
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|Munpol|2 = |G|2 +
1

|M̃2
W |2
|Q|2 − 2Re(G∗Q) (33)

|Mλ=T |2 = |G|2 + |ϑ|2 + 2Re(G∗ϑ) (34)

|Mλ=0|2 = |ϑ|2 +
1

q4
|Q|2 + 2Re(ϑ∗Q) (35)

|Mλ=S |2 =

(
1

q4
+

1

|M̃2
W |2
− 2

q2M̃2
W

)
|Q|2 (36)

where,

G = GU + GD , ϑ = ϑU + ϑD , Q = QU +QD (37)

GU =
i

DW (q2)

(
Uα

in gαβ Jβ
out

)
, GD =

i

DW (q2)

(
Dα

in gαβ Jβ
out

)
(38)

Energy scale dependence of interference:

IW+1g
pol (νLτ

+
R )

mτ→0∼ EτEν

|DW (q2)|2
q2 E 2

W

(E 2
W − q2)2

(39)
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Numerical analysis of Interference: |M|2 vs
√

q2 plots(continued)

(a) (b)

A special kinematic configuration where J0
out = 0 which makes

Jβ
outnβ = 0 =⇒ ϑ = 0, I = 0

Interference effect varies with phase space points

Interference is non zero even in on-shell limit
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