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AFP project

ATLAS Forward Proton
Forward detector focused on diffraction protons

Placed in a "Roman Pot” (RP) ~ 210m from IP (Interaction
Point) of ATLAS

3D pixel detektor + ToF (only far stations)
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My work is focused on the Time-of-Flight (ToF) subdetector
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ToF design — motivation, requirements

Fast timing Cherenkov detector
Purpose:
assign protons detected by AFP to individual collisions in IP1
— time determines position and allows pairing with proper vertex

Requirements:
timing: best case 10 ps resolution, 30 ps initially
10 ps — spatial 3mm
radiation hardness (forward region, few mm from LHC beam)
cover entire AFP tracker
segmentation (multi-proton detection)
detection rate 5 MHz (Run 2) up to > 20 MHz (Run 3)
L1 trigger signal
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AFP in the beamline




ToF design — optical part

4x4 matrix of bars made of quartz glass, L shape
bars are tilted 48° from the LHC beam (Cherenkov angle 6)
each bar originally glued from two parts using Epotek 305

Photonis miniPlanacon XPM85112 MCP-PMT (16 channels)
Typically ~ 100 photons from a bar reach a PMT channel
= ~ 15 — 20 photoelectrons

passing particle

Particle passes through "train” (n = 4 bars) Y
— 4 (mostly) independent measurements \\ N
. ; 1 . . N
— ideal case: 7 resolution improvement //)\
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MCP-PMT

Compact photomultiplier, main element is microchannel plate
(MCP), microchannels typically a couple pm

Pixelization of readout purely by anode pad segmentation
MPossible sharing of charge across channels (near boundaries)

Main advanatges: compact construction, timing resolution,
operation in strong magnetic fields (up to few T)

Photocathode CHANNEL
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MCP-PMT anode channels
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ToF design — electronics

PMT signal is processed by wideband electronics (fast edged < 1ns)
Two preamp stages: 16.5/19dB gain (6.7x/9x amplitude)
CFD - Constant Fraction Discriminator

HPTDC — High Performance Time to Digital Converter
(24.4 ps/bin)

DAQ system

QBar

Particle

MCP-PMT Pre-amp b CFD HPTDC DAQ

10/27



Summary of introduced AFP-ToF upgrades
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Mechanical solution

PMT placement reworked — now all HV outside vacuum
Strong focus on shielding from outside interference
Easier precision alignment of the ToF bars

No signal feedthroughs, access to first stage amps without opening
the pot

Much better cooling of components originally in vacuum
Integration of artificial light source for testing purposes

Bars // / /
‘ Tracker|
Roman

< 4x precision screws
Heat exchanger & preamps

(a) (b)

Vv
4 optical fibers
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Upgrade to glueless construction

more light yield, mitigation of degradation from radiation exposure
Train width optimalization

chosen 3mm, 3mm, 5mm and 5.5mm (2mm too fragile)

Losses on glue\ 20% (measurement + simulation)

‘Spectral ransmission ‘Suprasil and Epotek 305
Fresnels losses .

by VuVas2000 vacuum
spectrometer
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Photomultipliers

Selected Photonis miniPLANACON XPM85112-S-R2D2
Long life (withstands high integrated charge)
Slightly worse TTS (~ 40 ps)

Targeting lowest possible internal resistance

Custom backend of own production (UP Olomouc)
HV divider adjusted as well
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Electronics

Amplifiers
first stage form factor radically modified (integrated on cables),
while keeping the same amplifier element
third stage added, remote control of attenuation

CFD with variable pulse length (amplitude information)

Trigger module — inserted after CFD, also filters events
HPTDC

FPGA replaced with a more radiation tolerant type (SEU issues)
much more precise and capable PicoTDC to be deployed soon

Trigger signal TP

LQBar

/

Particle

Pre-ampl y| cEp 3 Trigger —» HPTDC —>»| RCE

MCP-PMT v
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Rate capability concerns
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Rate capability — PMT

Originally insufficient pulse rate capability of the used PMTs

(Run 3 up to 20 MHz hit rate, possibly even 60 MHz with showers)
Optimization of powering scheme and theoretical description of
observed rate limitations
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lower PMT gain means less charge depleted per pulse
insufficient amplitude compensated by extra amplifier stage
downside: more sensitive to noisy components and interference
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ity — TDC

HPTDC known limit 8 MHz per channel
PicoTDC much more capable, > 200 MHz (depends on latency)
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Timing resolution of AFP-ToF
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PMT timing resolution

Very good thanks to short electron paths inside microchannels
Main characteristic: TTS (transit time spread), typically few tens
of ps (30 — 40 ps in ones we use)

TTS histogram shows a tail of electrons bounced off MCP face
For good results, CFD (HW/SW) is needed, otherwise "time walk”

Combined resolution (SW CFD)
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Beam tests (Raw, HPTDC)

RAW: 20 — 25 ps single channel, 14 — 18 ps 4 ch combined
TDC: 20 — 23 ps 4 ch combined
Newer PMTs (worse TTS) and lower gain impact timing
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AFP-ToF at LHC (2017) — performance

Very bad efficiency < 5% (limited PMT lifetime)

Not suitable for vertex selection, able to determine timing
resolution regardless
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AFP-ToF timing with PicoTDC (Beam Test)

PicoTDC after SiPM (trigger) subtraction:
SiPM+Pico 13.4 ps
ToF Train average: 17.2 ps
PicoTDC single channel: 8-10 ps
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Timing resolution contributions

PMT TTS: ~ 40ps

+ number & timing distribution of photons delivered by a bar
— PMT + bar: 20 — 25 ps

Train combination: 14 — 16 ps

Amplifiers: 3 — 4 ps

CFD: 5ps

HPTDC: 15 — 17 ps

PicoTDC: 8 — 10 ps (uncalibrated)

Beam Test SiPM timing reference: 11 ps

At LHC - reference clock: 6ps (conservative estimate)
Final expected resolution:

~ 20 —30ps (HPTDC)

potentially under 20 ps (PicoTDC)
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Conclusion
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Conclusion

AFP-ToF has been deployed at the LHC, so far with limited success
Run2, 2017:

poor ToF efficiency of few percent (PMT degraded fast)
good timing resolution (21 ps) nonetheless!

Timing resolution of individual channels, vertex matching distribution
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Performance of the ATLAS Forward Proton Time-of-Flight Detector in 2017, ATL-FWD-PUB-2021-002

Run 3: Limited usefulness due to increased collision intensities
plan to deploy PicoTDC for 2026
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End of presentation

Thank you for your attention!
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