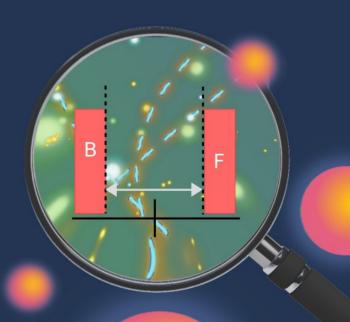
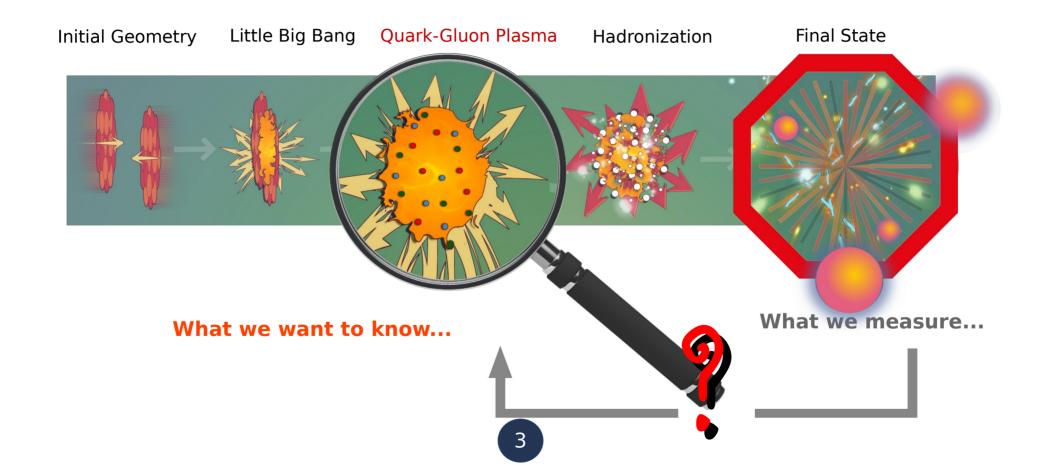
The forward-backward multiplicty correlations with the observable at LHC energies

Outline:

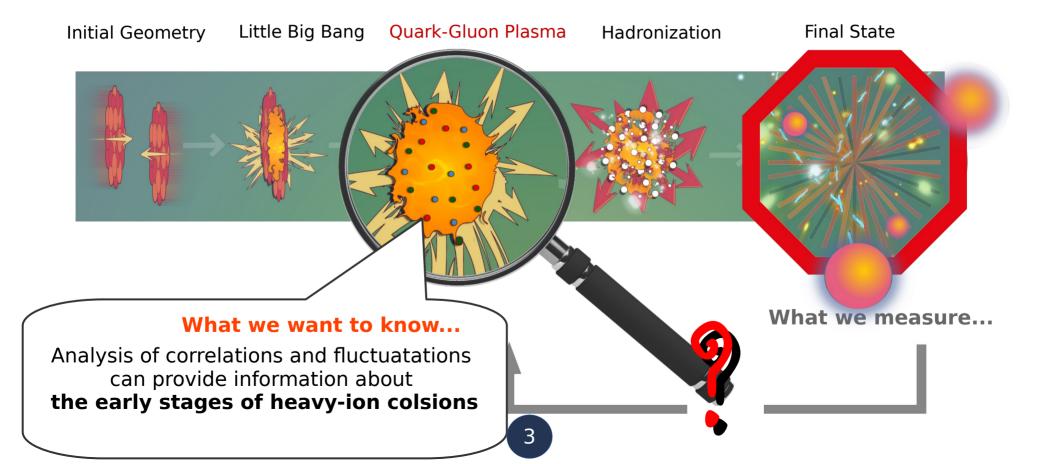
- 1. Motivation: why forward-backward correlations?
 - → What we want to learn and why standard tools struggle.
- 2. The observable Σ : definition and key properties
 - \rightarrow Why Σ is useful?
- 3. Experimental results from ALICE
 - → Pb-Pb, Xe-Xe, pp: main system-dependent trends.
- 4. Interpretation within simple source-based models
 - → What we can learn from WNM/WQM.
- 5. Multi-source superposition approach
 - \rightarrow A general statistical framework to organise contributions to Σ .
- 6. Broader implications and summary
 - \rightarrow What Σ tells us and what remains open.



Motivation: Why do we study correlations and fluctuations?



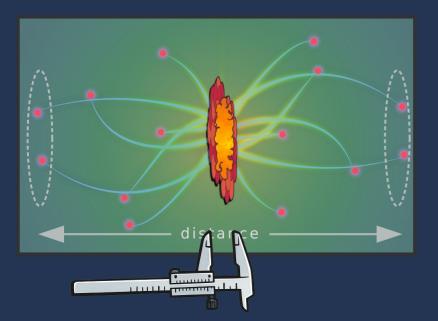
Motivation: Why do we study correlations and fluctuations?



Motivation: Why do we study correlations and fluctuations?

1. Thermodynamic insight:

→ Related to QCD susceptibilities via fluctuations of conserved charges.

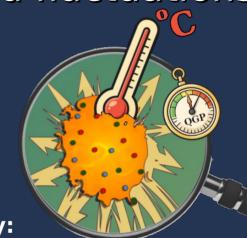


2. Early-stage sensitivity:

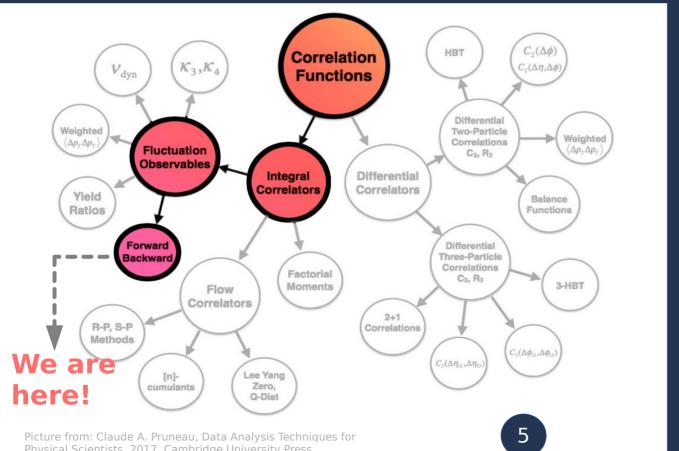
→ Long-range correlations must originate before longitudinal expansion.

3. Particle production dynamics:

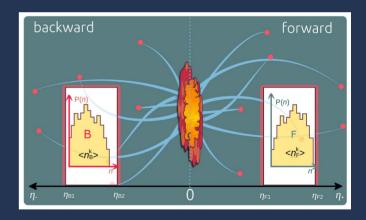
→ Correlation patterns reveal source structure and help test models.



The Analysis: How do we study correlations and fluctuations?

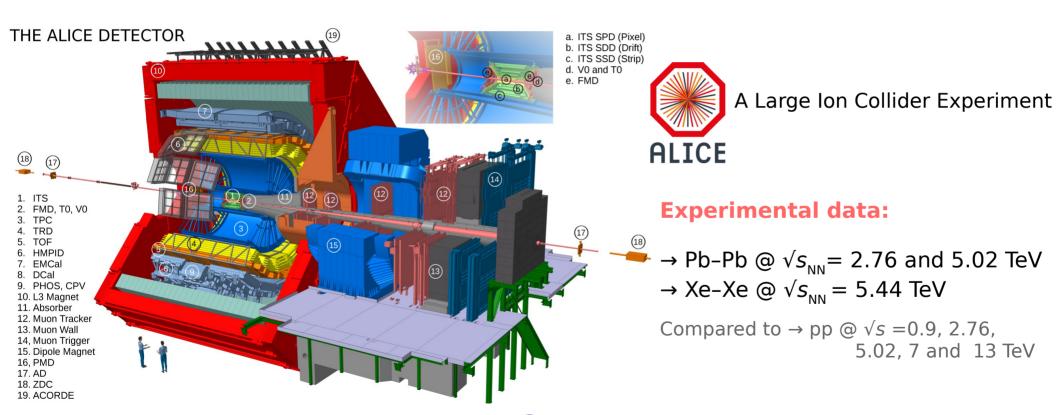


The forward-backward **(FB)** correlation:

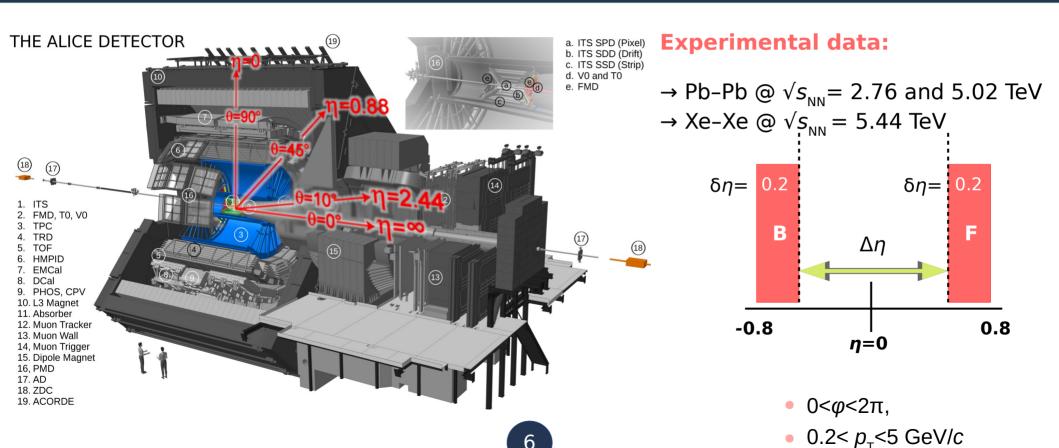


Physical Scientists, 2017, Cambridge University Press.

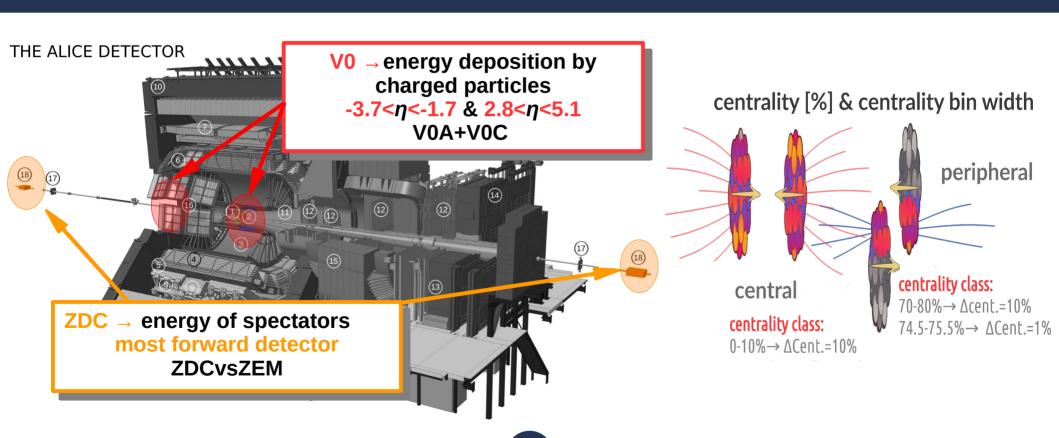
The Analysis: How do we study correlations and fluctuations?

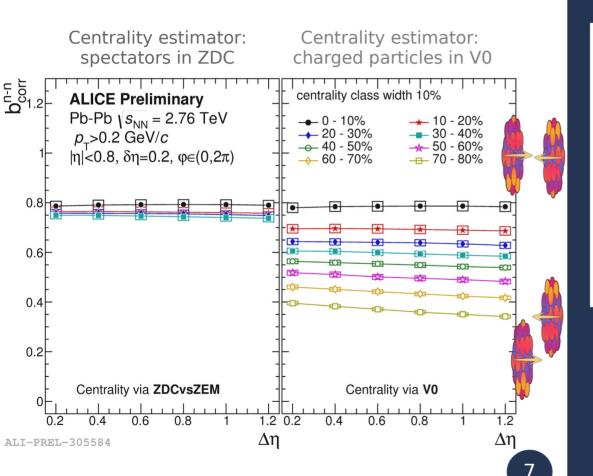


The Analysis: How do we study correlations and fluctuations?

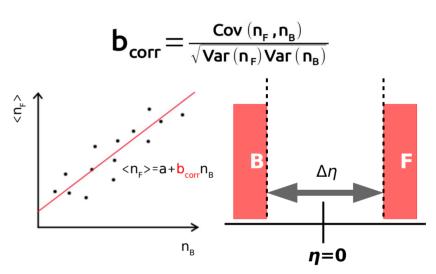


The Analysis: How do we study correlations and fluctuations?

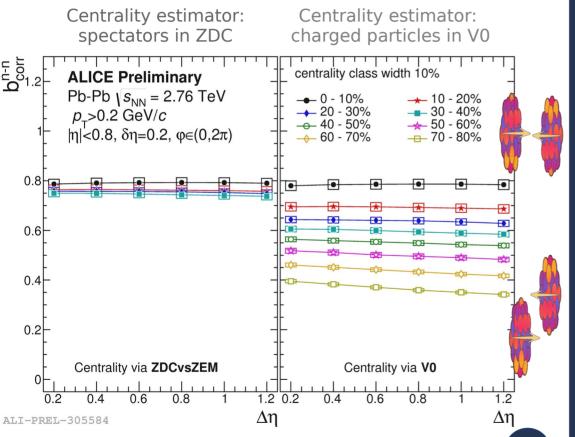




Correlation coefficient:



- is largely influenced by **geometrical** (volume) fluctuations.
- is dependent on centrality estimator;



Correlation coefficient:

Schoolchildren

Heavy-ion collisions

 $b_{corr}(weight, IQ) \approx 0.62$

 $b_{corr}(nF, nB) \approx 0.8$

Large correlations

event geometrical fluctuation

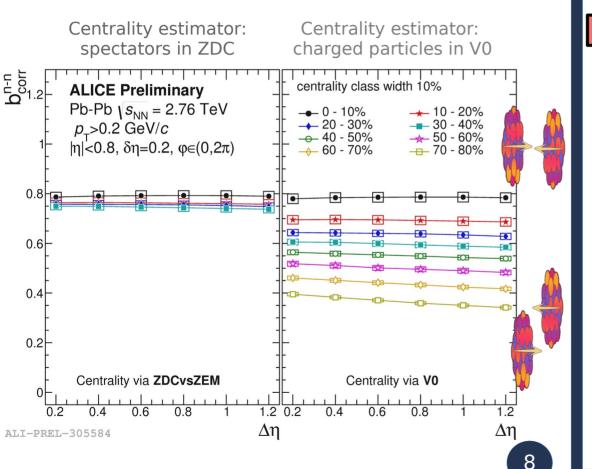
age fluctuation

Spurious effect of external variable leads to absurd conclusions!

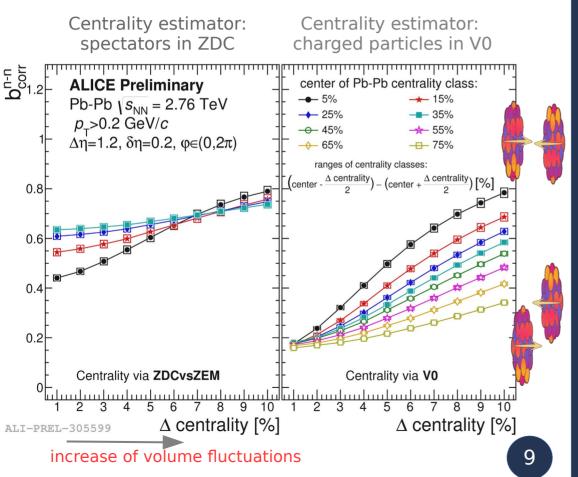
strict age selection

 $b_{corr}(weight, IQ) \approx 0$

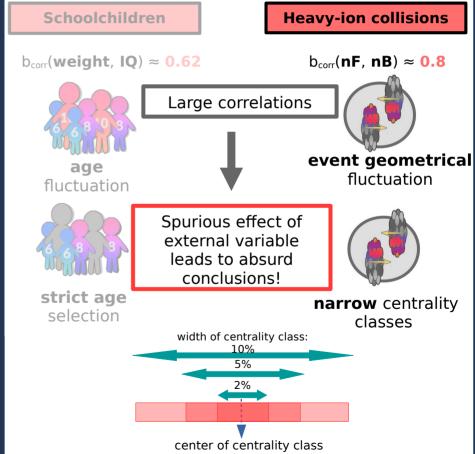
narrow centrality classes



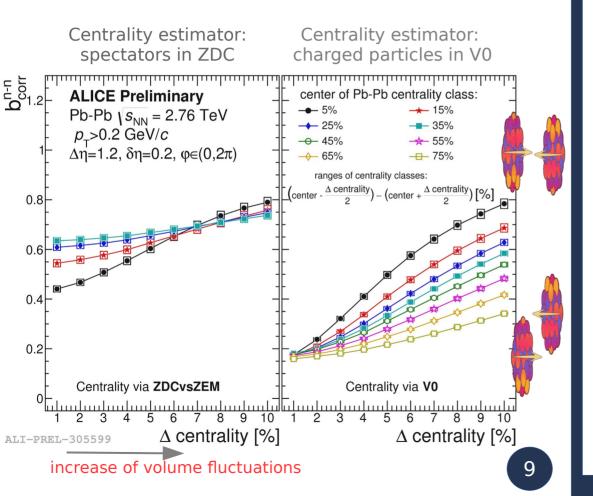
Correlation coefficient: Schoolchildren Heavy-ion collisions $b_{corr}(weight, IQ) \approx 0.62$ $b_{corr}(nF, nB) \approx 0.8$ Large correlations event geometrical age fluctuation fluctuation Spurious effect of external variable leads to absurd conclusions! strict age **narrow** centrality selection classes width of centrality class: 10% center of centrality class



Correlation coefficient:



Results: Forward-backward correlations with **b**

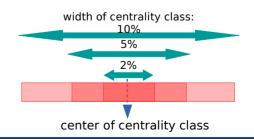


Correlation coefficient:

- Large values of b_{corr} but large centrality bin width → large geometrical (N_{part}) fluctuations within centrality class.
- Dependence on centrality estimator.
- Theoretical predictions: $b=1-\left[1+\frac{\bar{n}}{4}\right]$

A. Bzdak, Phys. Rev. C 80 (2009) 024906

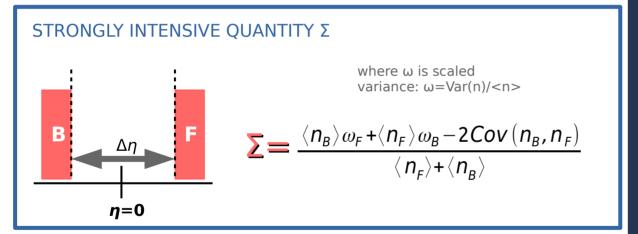
Scaled variance of number of participants ω_{part}



Results: FB correlations with strongly intensive quantity Σ

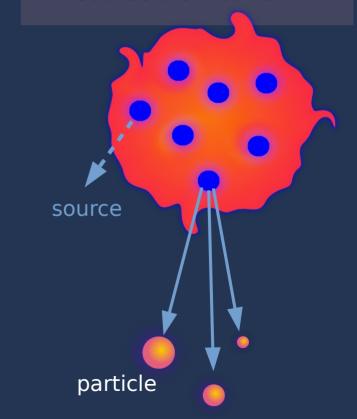
• **Strongly intensive quantities** do not depend on system volume nor system volume fluctuations.

Gaździcki, Gorenstein, Phys.Rev. C84 (2011) 014904



Independent source model:

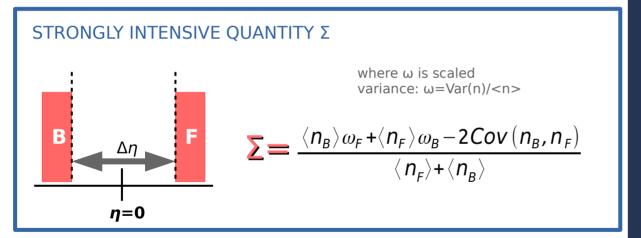
Σ → give direct information about characteristics of single source distribution!



Results: FB correlations with strongly intensive quantity Σ

• **Strongly intensive quantities** do not depend on system volume nor system volume fluctuations.

Gaździcki, Gorenstein, Phys.Rev. C84 (2011) 014904



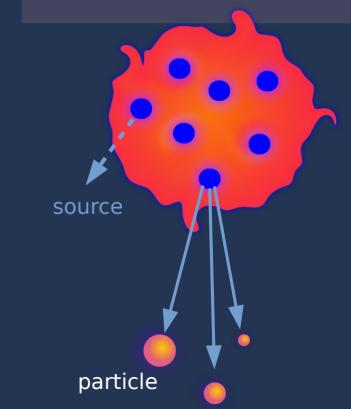
• For a symmetric collision $\omega_{\rm B} = \omega_{\rm F}$ and $< n_{\rm F}> = < n_{\rm B}>$

$$\Sigma \approx \omega (1-b_{corr}).$$

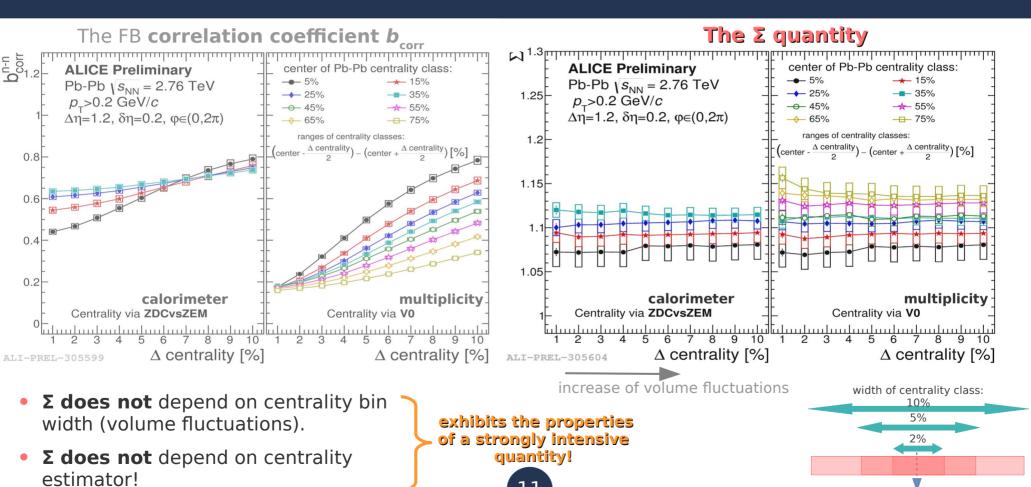
For Poisson distribution: $\omega = 1 \& b_{corr} = 0 \rightarrow \Sigma = 1$

Independent source model:

Σ → give direct information about characteristics of single source distribution!

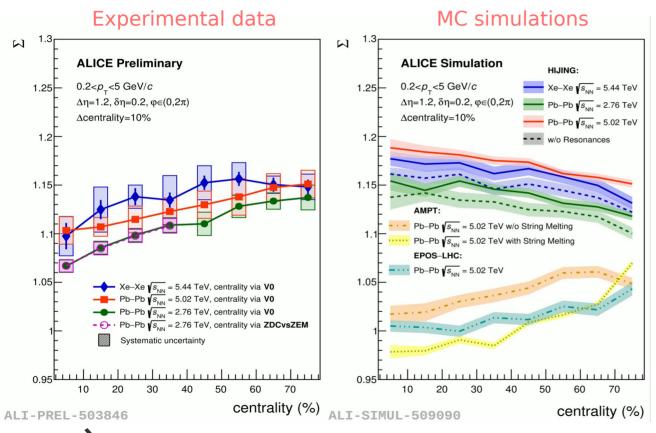


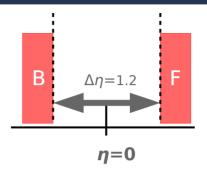
Results: ∑ as a function of centrality bin width



center of centrality class

Results: Σ as a function of centrality





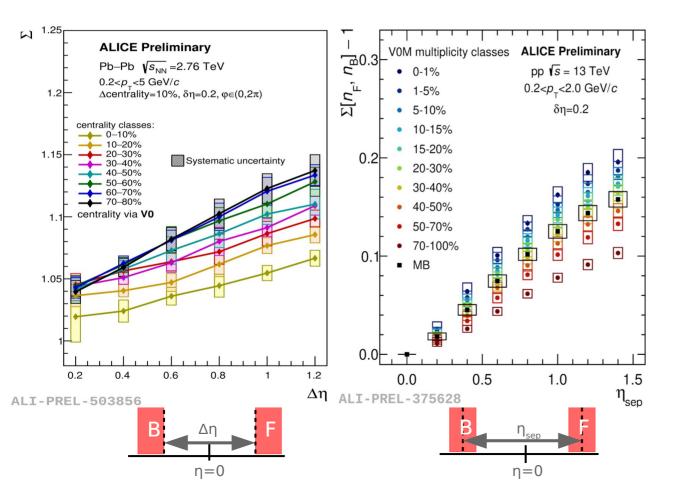
- In experimental data, Σ increases with energy and with decreasing centrality, opposite to the MC HIJING behavior.
- MC AMPT and MC EPOS reproduce the centrality trend of Σ qualitatively but not quantitatively.
- MC AMPT results indicate that Σ is sensitive to the particle-production mechanism.

V0 ≈ ZDCvsZEM

→ no dependence on centrality estimator!

12

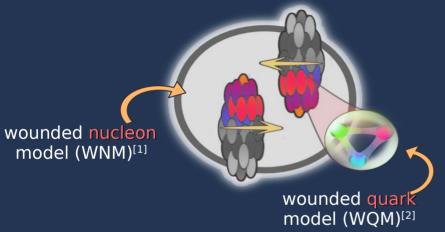
Results: Σ as a function $\Delta \eta$



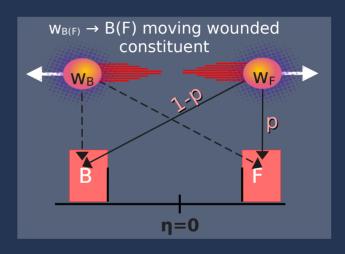
- **increase** with $\Delta \eta$;
- **Pb-Pb: decrease** of Σ with increasing centrality class;
- pp: Σ grows with the increase of forward event multiplicity; contrary to Pb-Pb.

Different ordering of Σ with centralityfor Pb-Pb and pp.

$$\Sigma \approx \omega (1-b_{corr})$$



Two-component scenario^[3]:

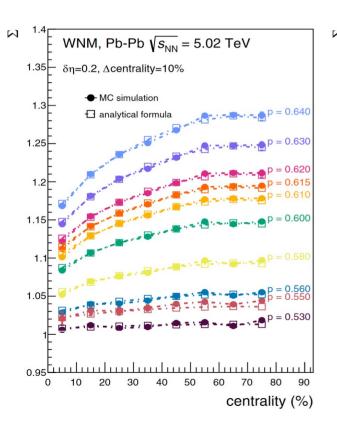


- [1] A. Białas, M. Bleszyński and W. Czyż, Nucl. Phys. B 111, 461 (1976)
- [2] A. Białas, W. Czyż and W. Furmański, Acta Phys. Polon. B 8, 585 (1977)
- [3] A. Bzdak, Phys. Rev. C 80, 024906

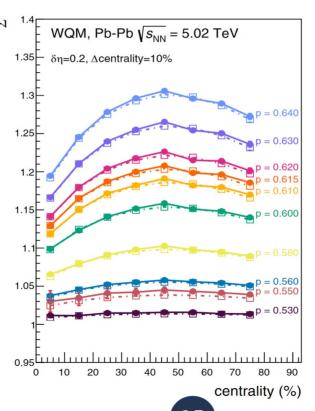
Σ in WNM and WQM for a symmetric AA collision:

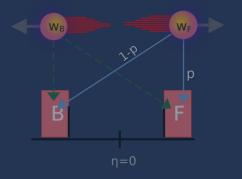
$$\Sigma = 1 + \frac{\bar{n}}{2}(2p-1)^2 \left[\frac{\langle (w_B - w_F)^2 \rangle}{2\langle w_F \rangle} + \frac{2}{k}\right]$$
 ISM assumption intrinsic dependence on the number of \mathbf{w}_{F} and \mathbf{w}_{B}

WNM



WQM



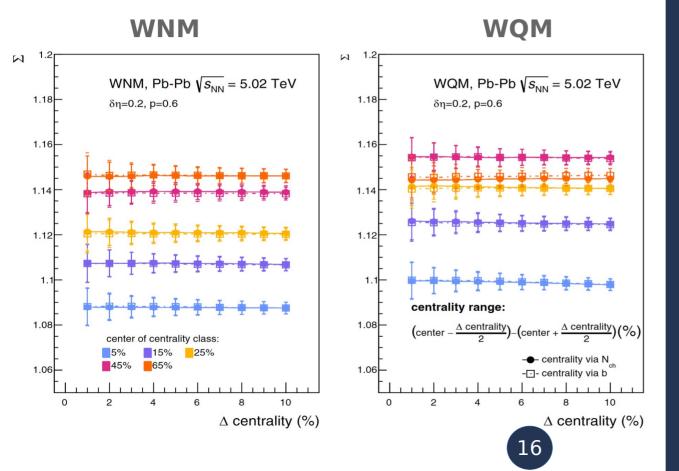


symmetric AA collision:

$$\Sigma = 1 + \frac{\bar{n}}{2} (2p - 1)^2 \left[\frac{\langle (w_B - w_F)^2 \rangle}{2 \langle w_F \rangle} + \frac{2}{k} \right]$$

- $p = 0.5 \rightarrow \Sigma = 1$ and Σ is SIQ;
- $\mathbf{p} \neq \mathbf{0.5} \rightarrow \mathbf{\Sigma} > \mathbf{1}$ and shows intrinsic dependence on the number of \mathbf{w}_F and \mathbf{w}_B

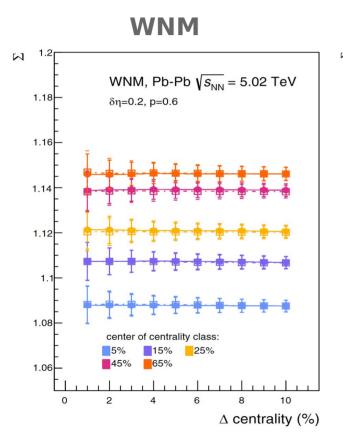
no longer a strongly intensive quantity!



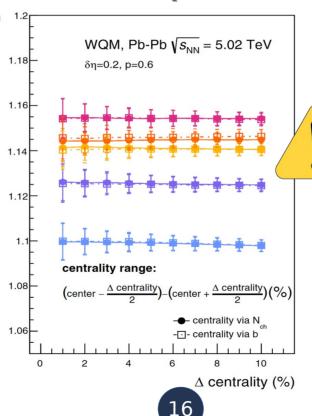
Σ no longer a strongly intensive quantity!

symmetric AA collision:

$$\Sigma = 1 + \frac{\bar{n}}{2} (2p - 1)^2 \left[\frac{\langle (w_B - w_F)^2 \rangle}{2 \langle w_F \rangle} + \frac{2}{k} \right]$$



WQM



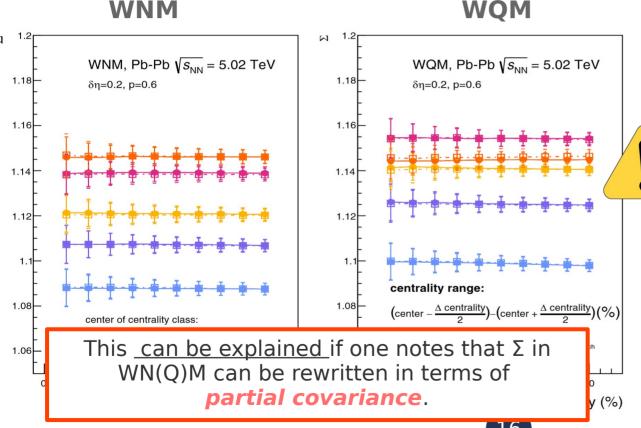
Σ no longer a strongly intensive quantity!

symmetric AA collision:

$$\Sigma = 1 + \frac{\bar{n}}{2} (2p - 1)^2 \left[\frac{\langle (w_B - w_F)^2 \rangle}{2 \langle w_F \rangle} + \frac{2}{k} \right]$$

- resemblance to the behavior reported by ALICE (slide 11)
- **Σ does not** depend on centrality bin width (volume fluctuations).
- **Σ does not** depend on centrality estimator!

"SIQ-like" properties!



Σ no longer a strongly intensive quantity!

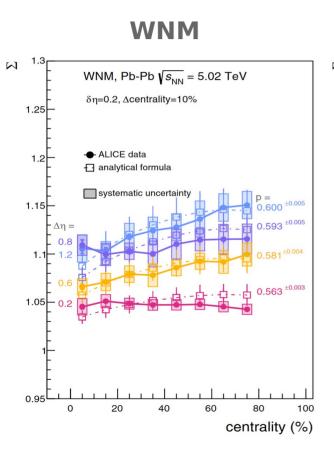
symmetric AA collision:

$$\Sigma = 1 + \frac{\bar{n}}{2} (2p - 1)^2 \left[\frac{\langle (w_B - w_F)^2 \rangle}{2 \langle w_F \rangle} + \frac{2}{k} \right]$$

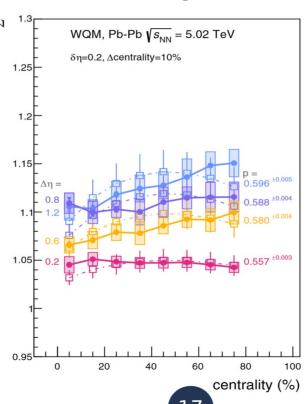
- resemblance to the behavior reported by ALICE (slide 11)
- Σ does not depend on centrality bin width (volume fluctuations).
- **Σ does not** depend on centrality estimator!

"SIQ-like" properties!

WN(Q)M: Σ quantity as a function of centrality

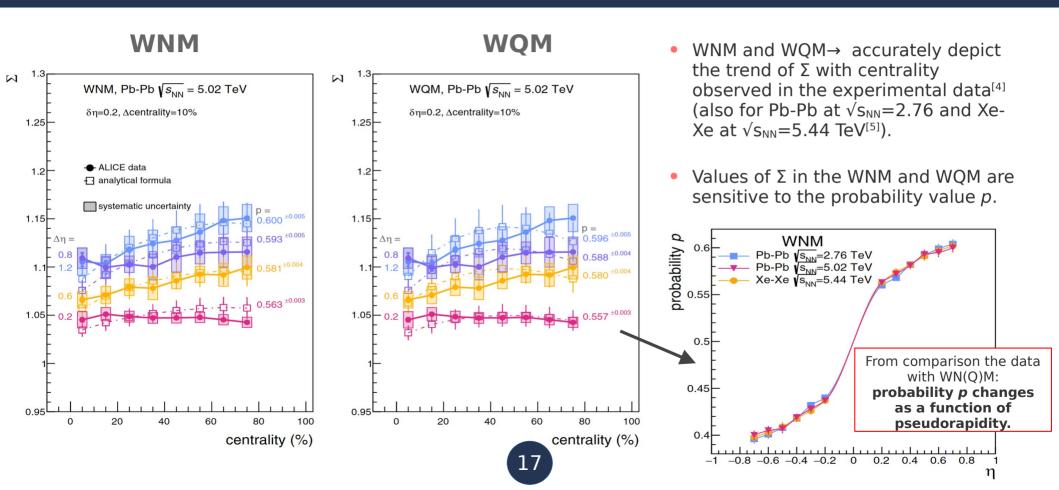


WQM



- WNM and WQM→ accurately depict the trend of Σ with centrality observed in the experimental data^[4] (also for Pb-Pb at $\sqrt{s_{NN}}$ =2.76 and Xe-Xe at $\sqrt{s_{NN}}$ =5.44 TeV^[5]).
- Values of Σ in the WNM and WQM are sensitive to the probability value p.

WN(Q)M: Σ quantity as a function of centrality



Wounded constituent fragmentation functions **F(n)** in symmetric Pb-Pb collisions



The particle production for each wounded nucleon/quark → described by **universal fragmentation function F(η)**:

$$N(\eta) = \langle w_F \rangle F(\eta) + \langle w_B \rangle F(-\eta)$$

 $\mathbf{F}(\boldsymbol{\eta})$ DETERMINATION:

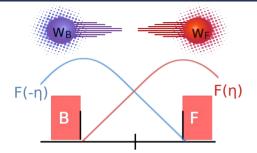
"STANDARD" METHOD

- →based on measurement of N(n)
- = $dN_{ch}/d\eta$ distribution:

$$F(\eta) = \frac{1}{2} \left(\frac{N(\eta) + N(-\eta)}{\langle w_F \rangle + \langle w_B \rangle} + \frac{N(\eta) - N(-\eta)}{\langle w_F \rangle - \langle w_B \rangle} \right)$$

only for asymmetric collisions $\langle \mathbf{wF} \rangle \neq \langle \mathbf{wB} \rangle$.

Wounded constituent fragmentation functions **F(n)** in symmetric Pb-Pb collisions



The particle production for each wounded nucleon/quark → described by **universal fragmentation function F(η)**:

$$N(\eta) = \langle w_F \rangle F(\eta) + \langle w_B \rangle F(-\eta)$$

$\mathbf{F}(\boldsymbol{\eta})$ DETERMINATION:

"STANDARD" METHOD

- →based on measurement of N(n)
- $= dN_{ch}/dn$ distribution:

$$F(\eta) = \frac{1}{2} \left(\frac{N(\eta) + N(-\eta)}{\langle w_F \rangle + \langle w_B \rangle} + \frac{N(\eta) - N(-\eta)}{\langle w_F \rangle - \langle w_B \rangle} \right)$$

only for asymmetric collisions $\langle \mathbf{wF} \rangle \neq \langle \mathbf{wB} \rangle$.

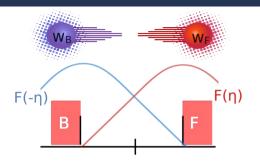
NEW APPROACH:

 \rightarrow based on the **relation** between p and Σ in WN(Q)M

$$F(\eta) pprox rac{p}{\langle w_F \rangle + \langle w_B \rangle} [N(-\eta) + N(\eta)].$$

It provides a unique opportunity to determine the $F(\eta)$ in a **symmetric** nucleus-nucleus collision.

Wounded constituent fragmentation functions **F(n)** in symmetric Pb-Pb collisions



The particle production for each wounded nucleon/quark → described by **universal fragmentation function F(η)**:

$$N(\eta) = \langle w_F \rangle F(\eta) + \langle w_B \rangle F(-\eta)$$

$F(\eta)$ DETERMINATION:

"STANDARD" METHOD

- →based on measurement of N(n)
- $= dN_{ch}/dn$ distribution:

$$F(\eta) = \frac{1}{2} \left(\frac{N(\eta) + N(-\eta)}{\langle w_F \rangle + \langle w_B \rangle} + \frac{N(\eta) - N(-\eta)}{\langle w_F \rangle - \langle w_B \rangle} \right)$$

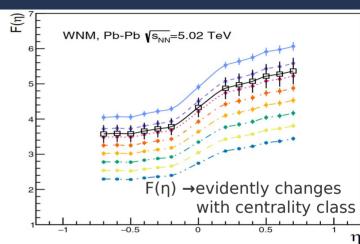
only for asymmetric collisions $\langle \mathbf{wF} \rangle \neq \langle \mathbf{wB} \rangle$.

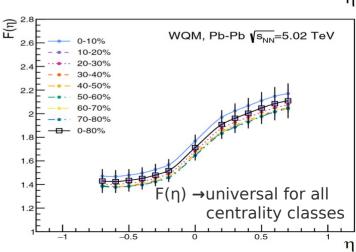
NEW APPROACH:

 \rightarrow based on the **relation** between p and Σ in WN(Q)M

$$F(\eta) pprox rac{p}{\langle w_F \rangle + \langle w_B \rangle} [N(-\eta) + N(\eta)].$$

It provides a unique opportunity to determine the $F(\eta)$ in a **symmetric** nucleus-nucleus collision.

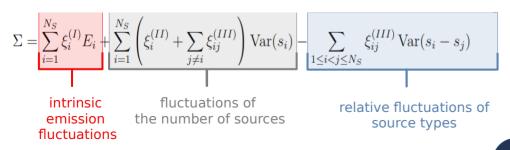




Σ within a multi-source superposition approach

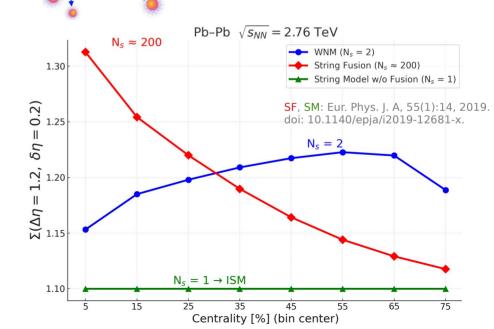
 Several standard superposition models → a special cases of the multi-source statistical apprach.

- Not a dynamical model → a transparent diagnostic/statistical tool for organising contributions to Σ.
- Within a multi-source setup, Σ decomposes into three generic contributions:



Multi-source superposition →
natural extension of ISM

 $N_s = 3$



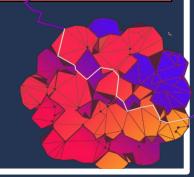
Summary

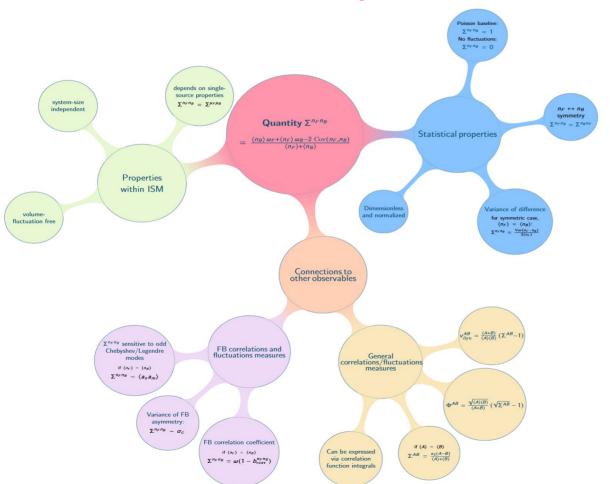
- Σ is robust in Pb-Pb/Xe-Xe collisions \rightarrow independent of centrality selection & volume fluctuations \rightarrow closer to genuine dynamics.
- Σ increases with $\Delta \eta$, system energy and centrality dependence (AA \uparrow pp \downarrow).
- HIJING, AMPT, EPOS **fail to describe** Σ consistently across AA; simple source-based models capture the trends.
- In WNM/WQM Σ is not SIQ, but retains SIQ-like properties in symmetric AA via partial covariance.
- Σ is sensitive to emission probability $p \rightarrow$ **new method** of extraction of the wounded-source fragmentation function.
- Multi-source superposition → clean statistical language to compare production scenarios.
- Σ connects to cumulants, charge fluctuations & partial covariance \rightarrow a tool beyond classical FB correlations.

Σ dependence on centrality selection and volume fluctuations I. Sputowska (ALICE), MDPI Proc. 10, 14 (2019)

Σ in AA and pp collisions I. Sputowska (ALICE), EP| Web Conf. 274, 05003 (2022).

M. I. Gorenstein and M. Gazdzicki, Phys. Rev. C 84, 014904 (2011), arXiv:1101.4865 [nucl-th].

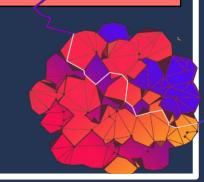


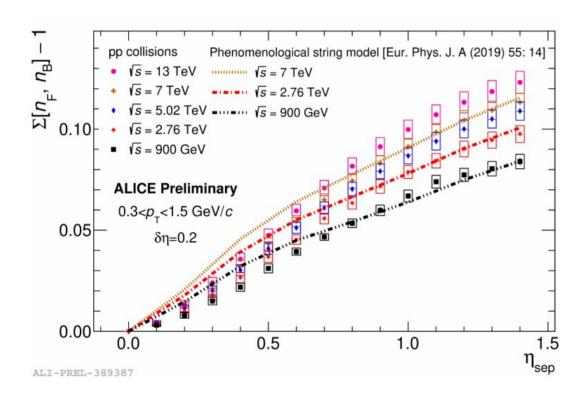


Σ dependence on centrality selection and volume fluctuations I. Sputowska (ALICE), MDPI Proc. 10, 14 (2019)

Σ in AA and pp collisions
I. Sputowska (ALICE),
EPJ Web Conf. 274, 05003 (2022).

M. I. Gorenstein and M. Gazdzicki, Phys. Rev. C 84, 014904 (2011), arXiv:1101.4865 [nucl-th].

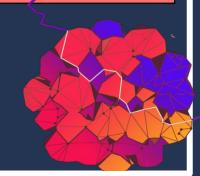


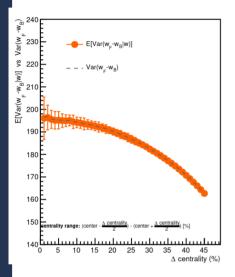


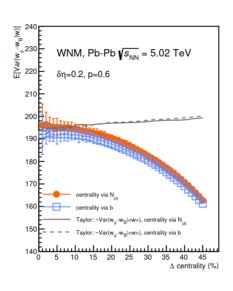
Σ dependence on centrality selection and volume fluctuations I. Sputowska (ALICE), MDPI Proc. 10. 14 (2019)

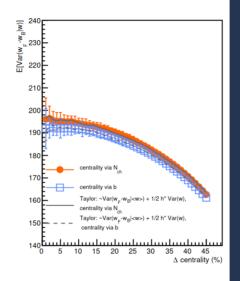
Σ in AA and pp collisions
I. Sputowska (ALICE),
EPJ Web Conf. 274, 05003 (2022).

Strongly Intensive Quantities M. I. Gorenstein and M. Gazdzicki, Phys. Rev. C 84, 014904 (2011), arXiv:1101.4865 [nucl-th].





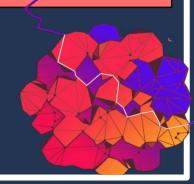


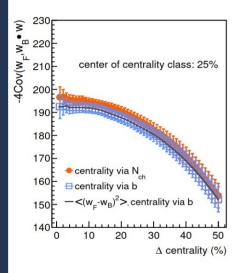


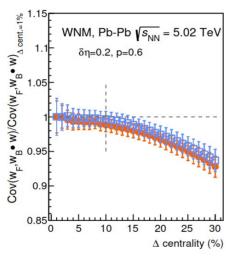
Σ dependence on centrality selection and volume fluctuations I. Sputowska (ALICE), MDPI Proc. 10. 14 (2019)

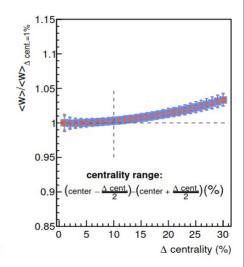
Σ in AA and pp collisions
I. Sputowska (ALICE),
EPI Web Conf. 274, 05003 (2022).

M. I. Gorenstein and M. Gazdzicki, Phys. Rev. C 84, 014904 (2011), arXiv:1101.4865 [nucl-th].





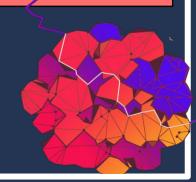


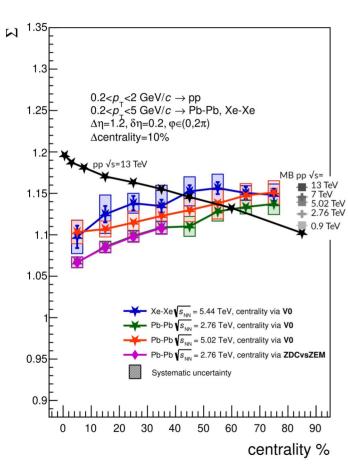


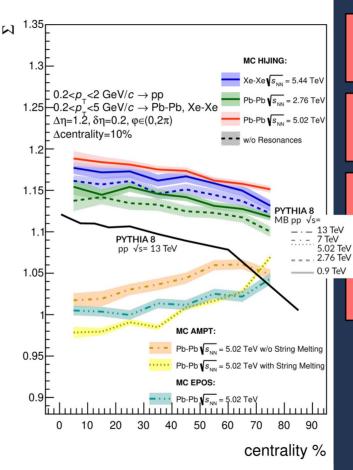
Σ dependence on centrality selection and volume fluctuations I. Sputowska (ALICE), MDPI Proc. 10. 14 (2019)

Σ in AA and pp collisions
I. Sputowska (ALICE),
EPI Web Conf. 274, 05003 (2022).

Strongly Intensive Quantities
M. I. Gorenstein and M. Gazdzicki,
Phys. Rev. C 84, 014904 (2011),
arXiv:1101.4865 [nucl-th].







Σ dependence on centrality selection and volume fluctuations
I. Sputowska (ALICE), MDPI Proc. 10, 14 (2019)

Σ in AA and pp collisions
I. Sputowska (ALICE),
EPJ Web Conf. 274, 05003 (2022).

M. I. Gorenstein and M. Gazdzicki, Phys. Rev. C 84, 014904 (2011), arXiv:1101.4865 [nucl-th].

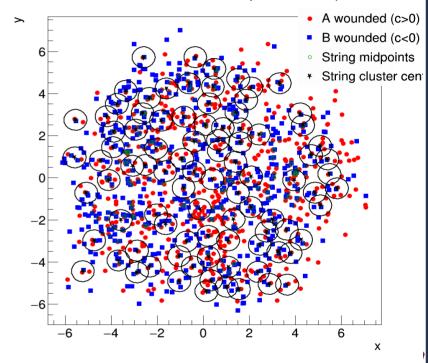
Quantity	Formula	
$\langle \mu_F^{(i)} \rangle$	$\mu_0^{(i)}\delta\eta o$	where $\mu_0^{(i)}$ is a distribution density of particles from string type i
$\langle \mu_B^{(i)} \rangle$	$\mu_0^{(i)}\delta\eta\rightarrow$	$\delta \eta$ is the width of pseudorapidity interval
$\operatorname{Var}(\mu_F^{(i)})$	$\langle \mu_F^{(i)} \rangle \left(1 + \langle \mu_F^{(i)} \rangle \Lambda^{(i)}(0) \right)$	vai
$Var(\mu_B^{(i)})$	$\langle \mu_B^{(i)} \rangle \left(1 + \langle \mu_B^{(i)} \rangle \Lambda^{(i)}(0) \right)$	
$\operatorname{Cov}(\mu_F^{(i)}, \mu_B^{(i)})$		

For symmetric collisions, the final expression for Σ takes the form:

$$\Sigma = \sum_{i=1}^{N_S} \xi_i^{(I)} \underbrace{\left(1 + \mu_0^{(i)} \delta \eta \left[\Lambda^{(i)}(0) - \Lambda^{(i)}(\Delta \eta) \right] \right)}_{\Sigma^{\mu_F^{(i)} \mu_B^{(i)}}}.$$
 (E.2)

which coincides with the formula for Σ derived in Ref. [110].

Most central event (max RDS)



Quantity	Formula	Quantity	Formula
$\langle \mu_F^{(1)} \rangle$ $\langle \mu_F^{(2)} \rangle$	$p\langle\mu_0\rangle$	$\langle \mu_B^{(1)} \rangle$	$(1-p)\langle \mu_0 \rangle$
$\langle \mu_F^{(2)} \rangle$	$(1-p)\langle \mu_0 \rangle$	$\langle \mu_B^{(2)} \rangle$	$p\langle\mu_0\rangle$
$Var(\mu_{F_{-}}^{(1)})$	$p(1-p)\langle \mu_0 \rangle + p^2 \operatorname{Var}(\mu_0)$	$Var(\mu_B^{(1)})$	$p(1-p)\langle \mu_0 \rangle + (1-p)^2 \text{Var}(\mu_0)$
$Var(\mu_F^{(2)})$	$p(1-p)\langle \mu_0 \rangle + (1-p)^2 \operatorname{Var}(\mu_0)$	$Var(\mu_B^{(2)})$	$p(1-p)\langle \mu_0 \rangle + p^2 \operatorname{Var}(\mu_0)$
$Cov(\mu_F^F, \mu_B^F)$	$p(1-p)\left(\operatorname{Var}(\mu_0) - \langle \mu_0 \rangle\right)$	$Cov(\mu_F^B, \mu_B^B)$	$p(1-p)\left(\operatorname{Var}(\mu_0) - \langle \mu_0 \rangle\right)$

$$\Sigma = 1 + (2p - 1)^2 \cdot \frac{\bar{n}}{k} + \frac{(2p - 1)^2 \bar{n}}{4\langle s_1 \rangle} \cdot \operatorname{Var}(s_1 - s_2) = 1 + (2p - 1)^2 \cdot \frac{\bar{n}}{2} \cdot \left(\frac{2}{k} + \frac{\operatorname{Var}(s_1 - s_2)}{2\langle s_1 \rangle}\right). \tag{E.6}$$

Σ dependence on centrality selection and volume fluctuations I. Sputowska (ALICE), MDPI

Proc. 10. 14 (2019)

Σ in AA and pp collisions

I. Sputowska (ALICE), EPJ Web Conf. 274, 05003 (2022).

Strongly Intensive Quantities

M. I. Gorenstein and M. Gazdzicki, Phys. Rev. C 84, 014904 (2011), arXiv:1101.4865 [nucl-th].

Σ in WNM and WQM

I. Sputowska, Phys.Rev.C 108 (2023) 1, 014903

Quantity	Formula	Quantity	Formula
$\langle \mu_F^{(1)} \rangle$ $\langle \mu_F^{(2)} \rangle$	$p\langle\mu_0\rangle$	$\langle \mu_B^{(1)} \rangle$	$(1-p)\langle \mu_0 \rangle$
$\langle \mu_F^{(2)} \rangle$	$(1-p)\langle \mu_0 \rangle$	$\langle \mu_B^{(2)} \rangle$	$p\langle\mu_0\rangle$
$Var(\mu_{F_{-}}^{(1)})$	$p(1-p)\langle \mu_0 \rangle + p^2 \operatorname{Var}(\mu_0)$	$Var(\mu_B^{(1)})$	$p(1-p)\langle \mu_0 \rangle + (1-p)^2 \text{Var}(\mu_0)$
$Var(\mu_F^{(2)})$	$p(1-p)\langle \mu_0 \rangle + (1-p)^2 \operatorname{Var}(\mu_0)$	$Var(\mu_B^{(2)})$	$p(1-p)\langle \mu_0 \rangle + p^2 \operatorname{Var}(\mu_0)$
$Cov(\mu_F^F, \mu_B^F)$	$p(1-p)\left(\operatorname{Var}(\mu_0) - \langle \mu_0 \rangle\right)$	$Cov(\mu_F^B, \mu_B^B)$	$p(1-p)\left(\operatorname{Var}(\mu_0) - \langle \mu_0 \rangle\right)$

$$\Sigma = 1 + (2p - 1)^2 \cdot \frac{\bar{n}}{k} + \frac{(2p - 1)^2 \bar{n}}{4\langle s_1 \rangle} \cdot \operatorname{Var}(s_1 - s_2) = 1 + (2p - 1)^2 \cdot \frac{\bar{n}}{2} \cdot \left(\frac{2}{k} + \frac{\operatorname{Var}(s_1 - s_2)}{2\langle s_1 \rangle}\right). \tag{E.6}$$

Σ dependence on centrality selection and volume fluctuations I. Sputowska (ALICE), MDPI

Proc. 10. 14 (2019)

Σ in AA and pp collisions

I. Sputowska (ALICE), EPJ Web Conf. 274, 05003 (2022).

Strongly Intensive Quantities

M. I. Gorenstein and M. Gazdzicki, Phys. Rev. C 84, 014904 (2011), arXiv:1101.4865 [nucl-th].

Σ in WNM and WQM

I. Sputowska, Phys.Rev.C 108 (2023) 1, 014903

