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Deep Inelastic Scattering (DIS)

Cleanest environment to probe parton
structure in nuclei

Kinematic variables

@ Photon virtuality:
Q*=-¢

o Bjorken x:

Q2
2P-q

X =
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Deep Inelastic Scattering (DIS)

@ Total cross sections expressed in terms of structure functions

o Collinear factorization:
» Collinear partons carry fraction x of target's momentum (at infinite momentum frame)
» Structure functions expressed in terms of parton distribution functions (PDFs)

Fi(x,Q%) = Zqou fi(1?)

j=4q,q,g p = factorization scale
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Deep Inelastic Scattering (DIS)

@ Total cross sections expressed in terms of structure functions

o Collinear factorization:
» Collinear partons carry fraction x of target's momentum (at infinite momentum frame)
> Structure functions expressed in terms of parton distribution functions (PDFs)

Fi(x,Q%) = ZQQM fi(1?)

j=4q,qG,g u = factorization scale

» PDFs are fitted to DIS data (to structure functions)
> Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution: PDFs to higher scales
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DGLAP evolution

o Resums g log(Q?/p2) ~ 1 terms

@ At LO: leading log (LL) level, only /™ log”(Q?) with n = m are considered,
subleading terms with n < m are neglected
— resumming ladder diagrams

&

( ) Qg 2 .. _
- 7Pi' f; »J = 4,9,
dlog( 2) o J®J(M) ,)=4,q9,8

e Splitting functions Pj; perturbatively calculated Pj(z) = P,S-O)( )+ 5= Plsl)( )+
@ At LO scheme independent, at higher orders factorization scheme and scale dependent
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DGLAP evolution

Usually one sets p? = Q2
Fi(x,Q%) = Zqou fi(1?)

PDFs parametrizated at initial scale Qq

dfi(p?) Qs 2
— =N e
d|0g(‘u2) ; o y ® J(/[ )

Global analysis:
@ Run DGLAP evolution
o Fit to data
.. - T arameters
ij=4q,3.8 ° R”"e P
@ Repeat
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DIS colliders

Only DIS collider experiment:

o HERA (Hadron-Elektron-Ringanlage) at DESY in
Hamburg

e 1992-2007

@ Lepton-proton collisions with center-of-mass energy
320 GeV

Near future:
o EIC (Electron-lon Collider) at BNL in NY
e ~ 2035
o Center-of-mass energy lower than at HERA
(20 — 140 GeV)
@ Advantages: nuclear targets, high luminosity, and
polarized beams
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Motivation

@ Structure functions will be measured at Electron-lon Collider (EIC)
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Motivation

@ Structure functions will be measured at Electron-lon Collider (EIC)
@ Problems with PDFs

» Parametrize non-observable quantities
» Factorization scheme dependence
> Need to define the relation between factorization scale and a physical scale
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Motivation

@ Structure functions will be measured at Electron-lon Collider (EIC)

@ Problems with PDFs
» Parametrize non-observable quantities
» Factorization scheme dependence
> Need to define the relation between factorization scale and a physical scale
@ Physical basis = set of linearly independent DIS observables
@ DGLAP evolution of observables in a physical basis
» Avoiding the problems with PDFs
» More straightforward to compare to experimental data
@ Previously discussed e.g. in Harland-Lang and Thorne 1811.08434, Hentschinski and Stratmann

1311.2825, W.L. van Neerven and A. Vogt hep-ph/9907472
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Motivation

@ Structure functions will be measured at Electron-lon Collider (EIC)
@ Problems with PDFs

» Parametrize non-observable quantities

» Factorization scheme dependence

> Need to define the relation between factorization scale and a physical scale
@ Physical basis = set of linearly independent DIS observables

@ DGLAP evolution of observables in a physical basis

» Avoiding the problems with PDFs
» More straightforward to compare to experimental data

@ Previously discussed e.g. in Harland-Lang and Thorne 1811.08434, Hentschinski and Stratmann
1311.2825, W.L. van Neerven and A. Vogt hep-ph/9907472

@ The novelty of our work:

» Momentum space
» Full three-flavor basis at NLO

@ NLO physical basis 2412.09589 continuation for LO work 2304.06998
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Straightforward example with only two observables

\iy, —¢?=Q? Z Cre(Q% 1%) @ fi(112),

where F; = F>, Fr, /52, and f =%, g

Quark singlet:
T(x,1%) = 329 [0 1) +q(x, p?)], e =3
Gluon PDF: g(x, u?)

First step: invert the linear mapping (difficult because f ® g = [ 4 f(2)g (%))
fi(1?) = 3 Cri(Q%,1%) ® Fi(@2) + O(a?)
DGLAP evolution in physical basis

dFi(x, @) ZdCFfQ 1)

2
dlog( 02 dlog(Q?) ® fi(u7)

DR e dCr(Q" . ) oY (@ 1) © Ful @)+ Od)
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Scheme and scale dependence at NLO

DGLAP evolution in physical basis:

dFi(x, Q?) dCre(Q?
dlog((ﬂ Z dFIfog Q2M ® Y Cai(Q% %) @ Fi(Q%) + O(a?)
k
—ZPk®FkQ2) 0(a?)

Kernels Pj are independent of the factorization scheme and scale
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Scheme and scale dependence at NLO

DGLAP evolution in physical basis:

dFi(x, Q%) dCre(Q?
dlog((ﬂ Z dF|fog Q2M ® Y Cai(Q% %) @ Fi(Q%) + O(a?)
k

= Zm ® Fu(@) + O(a)

Kernels Pj are independent of the factorization scheme and scale

Pii's determined by:
@ Splitting functions

o Coefficient functions
—— The scheme and scale dependence exactly cancels between these two
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Inverting the gluon PDF at NLO

Simple example without quarks

Invert g(x) from Fy, = C,E-l)g g+ 5= C(Q) where Fi(x, Q?) = 2 frlx Q%)

FLg
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Inverting the gluon PDF at NLO

Simple example without quarks

Invert g(x) from F = C(l) g+ 3= C,(_-i)g where Fi(x, Q?) = i—:i&(xx’oz)

Define inverse of C,(Ci)g as: g(x) = P(x) [CIEL)g ® g} with P(x) = == xzdizf —2xd 4 2}
q
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Inverting the gluon PDF at NLO

Simple example without quarks

Invert g(x) from F = C(l) g+ 3= C,(_-i)g where Fi(x, Q?) = i—:i&(xx’oz)

Define inverse of C,(Ci)g as: g(x) = P(x) [C( )

2
FLg®g] W|thP(X)_m XL —oxd +2}

®g=FL —ascﬁi)g

Get C,(Ei)g © g from Fy: c

FLe ®e
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Inverting the gluon PDF at NLO

Simple example without quarks

Invert g(x) from F = C(l) g+ 3= C,(_-i)g where Fi(x, Q?) = i—:iFL(Xx'Qz)

Define inverse of C,(Ci)g as: g(x) = P(x) {C( )

Frg ®g:| with P(X) = m |:X2di22- —2X +2:|

Rg= F - "‘S C,E_i)g

Get C,(Ei)g © g from Fy: c

FLe ®e

g(x) = P(x) [FL(x) - 222, @ ]
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Inverting the gluon PDF at NLO

Simple example without quarks

Invert g(x) from F = C(l) Qg+ = C,(:L)g where F(x, Q%) = %%Qz)

Define inverse of C,(Ci)g as: g(x) = P(x) |:C/(-_L)g ® g} with P(x) = STP\% {x2% —2xd 4 2}

Rg= F - "‘S C,(:i)g

Get C,(Ei)g © g from Fy: c

FLe ®e

g(x) = P(x) [FLx) — 22 CF) @ g]
Plug in g(x) = P(x)FL(x) + O (as) to the right hand side

g(x) = P(x)Fu(x) — Légz) P, @ PR] +0(a?)
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Six observable basis

o Full three-flavor basis: u,7,d,d,s =5, and g
— Need six linearly independent DIS structure functions
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Six observable basis

o Full three-flavor basis: u,7,d,d,s =5, and g

— Need six linearly independent DIS structure functions

@ We choose the NLO structure functions:

\’ _q2 — Q2

Neutral current ~*, Z
@ v* exhange — F, and F,
@ Z boson exhange — F3

Charged current  W=*
o W~ exhange — RV and F)Y

o ARV =FFV _F¥
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Comparison with conventional DGLAP evolution

Physical basis evolution Evolution with PDFs
o Renormalization scheme in oy (12) o Factorization scheme and scale
@ Perturbative truncation o Renormalization scheme in as(u?)
— sum rule not exact o Easy to enforce an exact sum rule
o Parametization of observable quantities @ Parametization of non-observable quantities
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Comparison with conventional DGLAP evolution
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Comparison with conventional DGLAP evolution

1
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@ Similar Q? evolution

@ Differences in values from:

> uncertainty in PDFs from scheme and scale (error band not shown)
> perturbative truncation
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Cross sections in terms of physical basis
Example of Higgs production by gluon fusion

2
A m
olp+p—H+X)= | dadxeg(x,)g(x, 1t)6gg—Hix (X1, X2, u—g’),

where my is the Higgs mass, g(x1, 1) and g(xz, i) are the gluon PDFs

14/24


https://arxiv.org/abs/1811.08434

Cross sections in terms of physical basis
Example of Higgs production by gluon fusion

2
n m
olp+p—H+X) = /dxldng(xl, 1)g(x2, )6 gg—Hix (X1, X2, ’u—g),

where my is the Higgs mass, g(x1, 1) and g(xz, i) are the gluon PDFs
Plug in the gluon PDF in physical basis: ~ g(x,p?) =Y, ;' (Q%, 1?) ® Fi(Q@?)

where F; = Fa, Fr,/ 5%, F3, ARV ,F}V  F,

v
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Cross sections in terms of physical basis
Example of Higgs production by gluon fusion

2
N m
U(p +p—H+ X) = /Xmd)Qg(XL “)g()Q: /")Jgg%f‘HX(leX% Tg)a

where my is the Higgs mass, g(x1, 1) and g(x2, u) are the gluon PDFs
Plug in the gluon PDF in physical basis: ~ g(x,p?) =Y, ;' (Q%, 1?) ® Fi(Q@?)
where F; = Fa, Fr/ 5%, F3, AR FIV V-

olp+p— H+X)=

/dXIdX2Ugg~>H+X(X17X27 [Z 7#2)®Fj(02)} [Z CQI(QZ’#2)®F/<(Q2)

X1 < X2
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Cross sections in terms of physical basis
Example of Higgs production by gluon fusion

2
olp+p—H+X)= /dX1dX2g(X1~ 11)8(x2, 1) gg—Hix (X1, X2, %)’

where my is the Higgs mass, g(x1, 1) and g(x2, u) are the gluon PDFs

Plug in the gluon PDF in physical basis:  g(x,u?) = Y; C,.*(Q%, 1?) ® Fj(Q?)

where Fj = Fo, Fr/§2, F3, AR, PV Y~

olp+p—H+X)=

/XmdXngaHer(Xth, [Z @ 1) ® Fj(Qz)} [Z Cig (@, 11%) ® Fi(Q?)
X1 < X2
Harland-Lang and Thorne 1811.08434:

explicit ;© dependence vanishes and terms log (QQ/m,ﬂ) are left behind

— no need to choose relation between p and @ or my 14/24
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Cross sections in pysical basis

Cancellation of factorization scheme and scale requires separating between the terms corresponding to
different perturbative orders

o= fi®o;®f
ij
ij

+a, [P 2o @ O+ P el o+ 020 o] } +0(a),

where f,.(O) and f,-(l) denote the corresponding LO and NLO physical-basis counterparts for the PDFs

Establish “PDF sets” of physical-basis counterparts for PDFs at LO and NLO

—> use existing codes to calculate LHC cross sections in physical basis
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Including final-state heavy flavours

-3|o(5) o (55)

J

® fi(1?)

o final-state particles on mass shell — need to change the momentum fraction
. . m2
Rescaling variable: x = x (1 + 7;)

Treatment of this scaling depends on the chosen heavy-flavour scheme. E.g. in S-ACOT scheme

Cof: /dezzqz)f(i)—>/A dZC( ) (5)
o CM (m

F, (M5/ @) is more complicated than in the massless case
— Can’t invert gluon PDF the same way
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DIS in gluon saturation regime

o Collinear framework does not include mechanism for taming down the gluon PDF growth at small x

@ Gluon saturation: At small x gluon recombination becomes substantial
—> gluons saturate
@ Colour Glass Condensate (CGC):

» classical colour field
» non-linear evolution
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DIS in gluon saturation regime

LO dipole picture NLO correction

DIS in dipole picture:
o classical target seen as a “shock wave” at rest

@ large photon plus light-cone momentum
o7 —2Z/d2bd2rdz’\Iﬂ =ad(r, 2, Q)| N(b, 1. ).
N = dipole amplitude
W7 99 —photon light front wave function
r = dipole transverse size, z = fraction of the photon plus momentum the quark carries
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BK vs DGLAP evolution

DGLAP BK
o large @2, moderate x o moderate @2, small x
o a5log(Q%/p?) ~ 1 e aslog(l/x) ~ 1
@ linear evolution @ non-linear evolution from gluon

recombination

'/ () et

%, DGLAP

S

& JIMWLK

S

saturation

In Q2

non-perturbative region ag~1

In x
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BK vs DGLAP evolution

@ One of goals in EIC is to search for gluon saturation
» saturation scale: Q2 ~ AY3x~* — saturation effects stronger in nuclei

@ To see saturation effects on experimental data we have to distinguish the genuine difference
between DGLAP and BK dynamics
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BK vs DGLAP evolution

@ One of goals in EIC is to search for gluon saturation
» saturation scale: Q2 ~ AY3x~* — saturation effects stronger in nuclei

@ To see saturation effects on experimental data we have to distinguish the genuine difference
between DGLAP and BK dynamics

@ Both frameworks require input which are fitted to the same experimental data
— The results do not deviate dramatically and distinguishing DGLAP/BK dynamics is difficult
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Comparison to BK-evolved F,1, (work in preparation)

o Need to be as independent as possible from the initial
condition parametrization

@ "Force” collinear factorization and CGC F; 1, to agree in a
line in (x, Q%) plane

o Differences between the two frameworks outside the
chosen line quantify signatures of gluon saturation

o With differences we can quantify the precision
needed at EIC and LHeC/FCC-he to distinguish
saturation effects
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Comparison to BK-evolved F,1, (work in preparation)

@ Matching in a common region of
validity for both frameworks:

> In a region Q® > Q2 where

o Need to be as independent as possible from the initial >
saturation effects are moderate

condition parametrization
> With small enough o log(Q?) so
that DGLAP evolution dynamics is
@ "Force” collinear factorization and CGC F; 1, to agree in a reliable

. . 2
line in (x, Q) plane > Also, aslog(Q?) can not be so
large that DGLAP evolution would

o Differences between the two frameworks outside the dominate

chosen line quantify signatures of gluon saturation

o With differences we can quantify the precision
needed at EIC and LHeC/FCC-he to distinguish
saturation effects
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Comparison to BK-evolved F,1, (work in preparation)

Goal

Set BK-evolved F; and F, as initial condition for (2-observable) physical basis DGLAP evolution
— compare BK vs. DGLAP dynamics
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Comparison to BK-evolved F,1, (work in preparation)

Goal

Set BK-evolved F; and F, as initial condition for (2-observable) physical basis DGLAP evolution
— compare BK vs. DGLAP dynamics

o However..
» LO DGLAP evolution (and NLO PDFs) in physical basis includes convolutions e.g.
1 4 X
Pag ® F2 :fx d7 qq(Z)F2 (})

— need Fp 1, initial values up to x =1
» Validity region for BK-evolved F,. 1, only up to x ~ 1072
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Comparison to BK-evolved F,1, (work in preparation)

Goal

Set BK-evolved F; and F, as initial condition for (2-observable) physical basis DGLAP evolution
— compare BK vs. DGLAP dynamics

o However..
» LO DGLAP evolution (and NLO PDFs) in physical basis includes convolutions e.g.
1 4 X
Pqq ® F2 = fx d?'qu(Z)F2 (})

— need Fp 1, initial values up to x =1
» Validity region for BK-evolved F,. 1, only up to x ~ 1072

BK-improved initial condition:

o Initial values for F, 1

at x < 1072 from BK/dipole picture
at x > 1072 from DGLAP/collinear factorization

@ Match F, 7, at the threshold
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PDFs from BK-evolved structure functions

Now we have analytical form to calculate gluon PDF and quark singlet from F, and Fy, in dipole picture

103]

10?2
LQ 10!
10°

-~ CT14 Q?=17 GeV? -- CT14 Q?=17GeV?

BK CT14 Q?=5.0 GeV? \ BK CT14 Q?=5.0 GeV?

— BK ---- CT14 Q2?=128.6 GeV? A —— BK ---- CT14 Q?=128.6 GeV?
107! - 107t -
108 1077 10°° 107° 1074 1073 1072 107! 10° 108 1077 10°° 1073 1074 1073 1072 107 10°
X X
LO gluon LO quark singlet

@ Weaker x-evolution with BK-evolved F 1,
o Bigger difference in gluon than in quark singlet
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Summary

@ Motivation: future DIS measurements at the Electron-lon Collider

o Goal: formulate DGLAP evolution directly for physical observables
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Summary

@ Motivation: future DIS measurements at the Electron-lon Collider
o Goal: formulate DGLAP evolution directly for physical observables

@ We have established physical basis at NLO in ag for six observables;
Fa, Fr, F3, ARY, FY and FY

@ Scheme dependence of PDFs play a role at NLO in aj
— Scheme and scale dependence avoided in the physical basis
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Summary

@ Motivation: future DIS measurements at the Electron-lon Collider

Goal: formulate DGLAP evolution directly for physical observables

@ We have established physical basis at NLO in ag for six observables;
Fa, Fr, F3, ARY, FY and FY

Scheme dependence of PDFs play a role at NLO in oy
— Scheme and scale dependence avoided in the physical basis

o What next:

» BK vs. DGLAP comparison
» Express LHC cross sections, e.g. Drell-Yan, in physical basis
> Include heavy quarks
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Backup: Comparison to BK-evolved Fj, (work in preparation)

3.5

3.0

— BK
— BK
— BK

—— BK-improved
—— BK-improved
—— BK-improved

w/o BK x=9.55x10"8
w/o BK x=1.07x107°
w/o BK x=1.02x107>

10!
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Backup: Comparison to BK-evolved F, (work in preparation)

—— BK —— BK-improved .- w/o BK x=9.55x108
17.5{ — BK —— Bk-improved ... w/o BK x=1.07x10-6
—— BK —— BK-improved ..... w/o BK x=1.02x10"5

15.0
12.5

o~ ]
W 10.0
7.5+

5.0

2.51
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