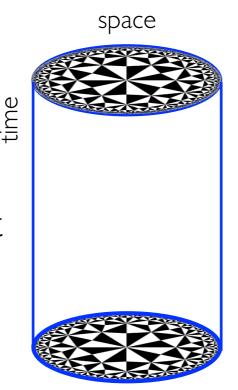
New vistas in quantum information aspects of gravity and quantum fields

Michal P. Heller

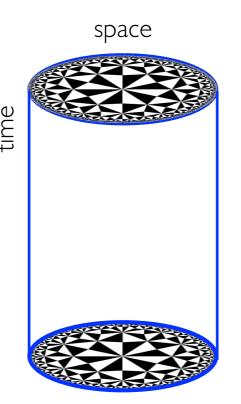

2408.15752 [PRL] and 2507.17847 [PRX in press] with Ori and Serantes

2412.17785 [PRL] with Papalini and Schuhmann see also 2503.10753 for a broad review of complexity in holography

Introduction

hep-th/9711200 by Maldacena, hep-th/9802109 by Gubser, Klebanov, Polyakov, hep-th/9802150 by Witten, ...

semi-classical gravity with negative cosmological constant and certain matter content



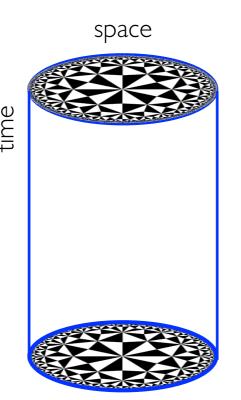
strongly-coupled quantum systems with many degrees of freedom certain cousins of QCD certain critical systems (CFTs) regimes of Sachdev-Ye-Kiteav model and living on the boundary

The nature of the breakthrough: fully quantitative relation

hep-th/9711200 by Maldacena, hep-th/9802109 by Gubser, Klebanov, Polyakov, hep-th/9802150 by Witten, ...

semi-classical gravity with negative cosmological constant and certain matter content

strongly-coupled quantum systems with many degrees of freedom certain cousins of QCD certain critical systems (CFTs) regimes of Sachdev-Ye-Kiteav model and living on the boundary


The nature of the breakthrough: fully quantitative relation

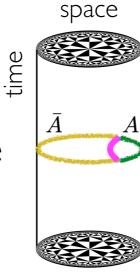
using gravity to learn about QFT (in particular, QCD)

using boundary quantum systems to learn about (quantum) gravity

hep-th/9711200 by Maldacena, hep-th/9802109 by Gubser, Klebanov, Polyakov, hep-th/9802150 by Witten, ...

semi-classical gravity with negative cosmological constant and certain matter content

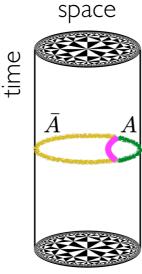
strongly-coupled quantum systems with many degrees of freedom certain cousins of QCD certain critical systems (CFTs) regimes of Sachdev-Ye-Kiteav model and living on the boundary


The nature of the breakthrough: fully quantitative relation

using gravity to learn about QFT (in particular, QCD)

using boundary quantum systems to learn about (quantum) gravity

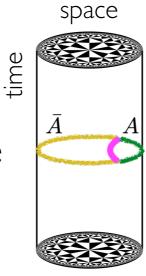
hep-th/0603001 by Ryu, Takayanagi, ..., 1304.4926 by Lewkowicz, Maldacena, ...


Bekenstein-Hawking entropy of the minimal area extremal surface anchored on the perimeter of \boldsymbol{A}

entanglement entropy of *A*in a holographic
quantum field theory

hep-th/0603001 by Ryu, Takayanagi, ..., 1304.4926 by Lewkowicz, Maldacena, ...

Bekenstein-Hawking entropy of the minimal area extremal surface anchored on the perimeter of \boldsymbol{A}

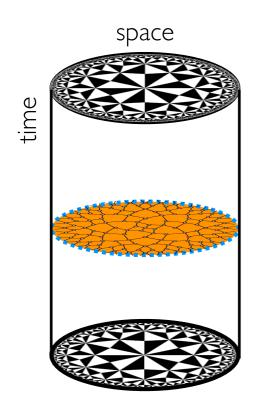

entanglement entropy of *A*in a holographic
quantum field theory

There is a sense in which holographic entanglement entropy acts as a tomography of dynamical spacetime geometry probing its emergence

1604.03110 by Czech, Lamprou, McCandlish, Mosk, Sully and 1606.03307 with de Boer, Haehl, Myers

hep-th/0603001 by Ryu, Takayanagi, ..., 1304.4926 by Lewkowicz, Maldacena, ...

Bekenstein-Hawking entropy of the minimal area extremal surface anchored on the perimeter of \boldsymbol{A}



entanglement entropy of *A*in a holographic
quantum field theory

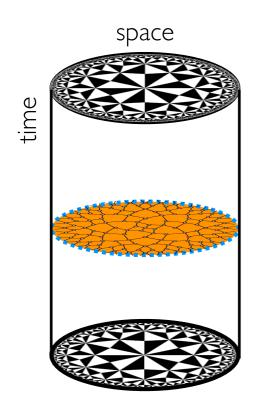
Broad relevance as it led to adoption of tools from quantum information science and quantum computing in the context of gravitational physics

Quantum information and spacetime: complexity

1402.5674 by Susskind, ..., 2503.10753 with Baiguera, Balasubramanian, Caputa, Chapman, Haferkamp, Halpern

volume of maximal volume time slice

~


some notion of complexity in the microscopic quantum system

. . .

Interesting, because the geometric object naturally characterizes black holes, which it universally grows linearly with time due to contributions from the inside.

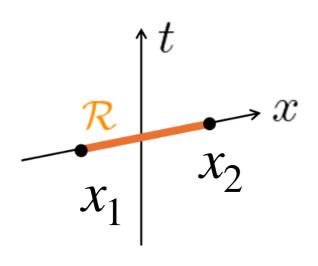
Quantum information and spacetime: complexity

1402.5674 by Susskind, ..., 2503.10753 with Baiguera, Balasubramanian, Caputa, Chapman, Haferkamp, Halpern

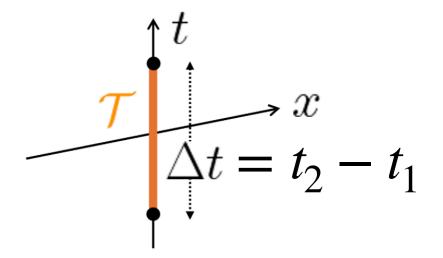
volume of maximal volume time slice

~

some notion of complexity in the microscopic quantum system


. . .

In contrast to holographic entanglement entropy, microscopic interpretation of holographic complexity still elusive.

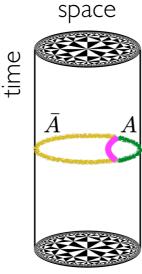

New ideas: entanglement

New boundary observable

2210.09457, 2302.11695 by Doi, Harper, Mollabashi, Takayanagi, Taki

CFT₁₊₁:
$$S = \frac{c}{3} \log \frac{\sqrt{(x_1 - x_2)^2}}{\delta}$$

$$S = \frac{c}{3} \log \frac{\sqrt{-(t_1 - t_2)^2}}{\delta}$$

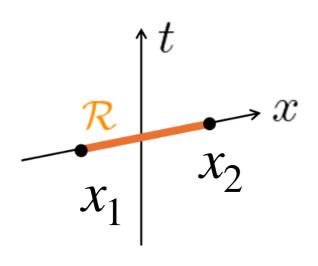

$$= \frac{c}{3} \left[\log \frac{\sqrt{(t_1 - t_2)^2}}{\delta} + i \frac{\pi}{2} \right]$$

standard entanglement

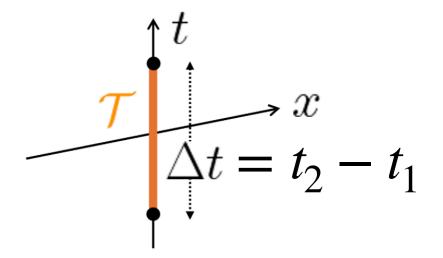
temporal entanglement

hep-th/0603001 by Ryu, Takayanagi, ..., 1304.4926 by Lewkowicz, Maldacena, ...

Bekenstein-Hawking entropy of the minimal area extremal surface anchored on the perimeter of \boldsymbol{A}


entanglement entropy of *A*in a holographic
quantum field theory

There is a sense in which holographic entanglement entropy acts as a tomography of dynamical spacetime geometry probing its emergence


1604.03110 by Czech, Lamprou, McCandlish, Mosk, Sully and 1606.03307 with de Boer, Haehl, Myers

New boundary observable

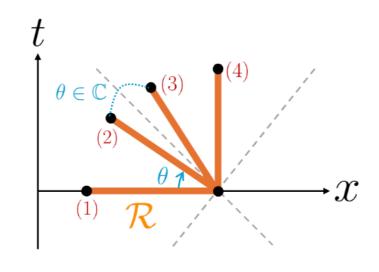
2210.09457, 2302.11695 by Doi, Harper, Mollabashi, Takayanagi, Taki

CFT₁₊₁:
$$S = \frac{c}{3} \log \frac{\sqrt{(x_1 - x_2)^2}}{\delta}$$

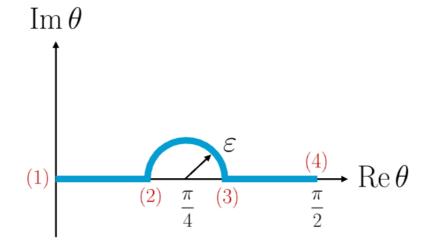
$$S = \frac{c}{3} \log \frac{\sqrt{-(t_1 - t_2)^2}}{\delta}$$

$$= \frac{c}{3} \left[\log \frac{\sqrt{(t_1 - t_2)^2}}{\delta} + i \frac{\pi}{2} \right]$$

standard entanglement


temporal entanglement

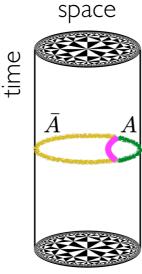
New result: holographic temporal entanglement


2408.15752 [PRL] and 2507.17847 with Fabio Ori and Alexandre Serantes

Prescription for holographic timelike entanglement entropy

2507.17847 with Fabio Ori and Alex Serantes

Analytically continue

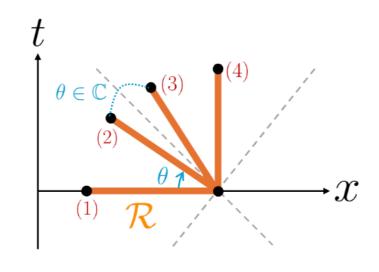


all Ryu-Takayanagi candidates to the timelike regime

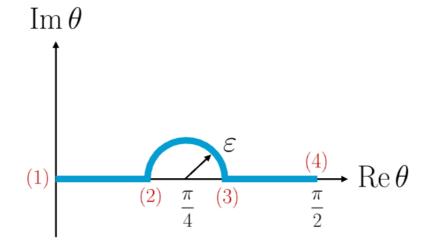
If more than one surface in the timelike part, minimize over the real part

hep-th/0603001 by Ryu, Takayanagi, ..., 1304.4926 by Lewkowicz, Maldacena, ...

Bekenstein-Hawking entropy of the minimal area extremal surface anchored on the perimeter of \boldsymbol{A}


entanglement entropy of *A*in a holographic
quantum field theory

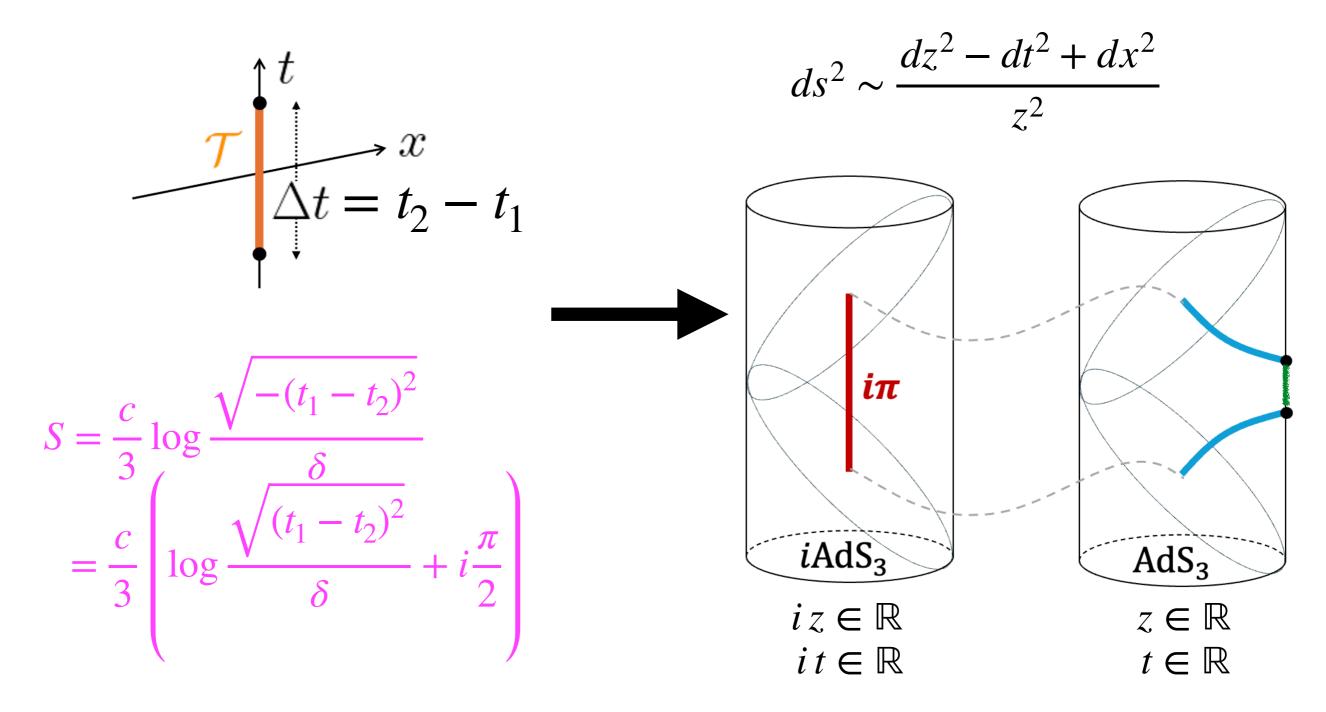
There is a sense in which holographic entanglement entropy acts as a tomography of dynamical spacetime geometry probing its emergence


1604.03110 by Czech, Lamprou, McCandlish, Mosk, Sully and 1606.03307 with de Boer, Haehl, Myers

Prescription for holographic timelike entanglement entropy

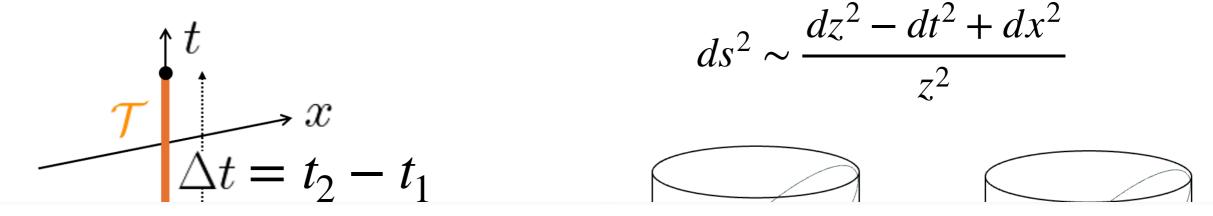
2507.17847 with Fabio Ori and Alex Serantes

Analytically continue

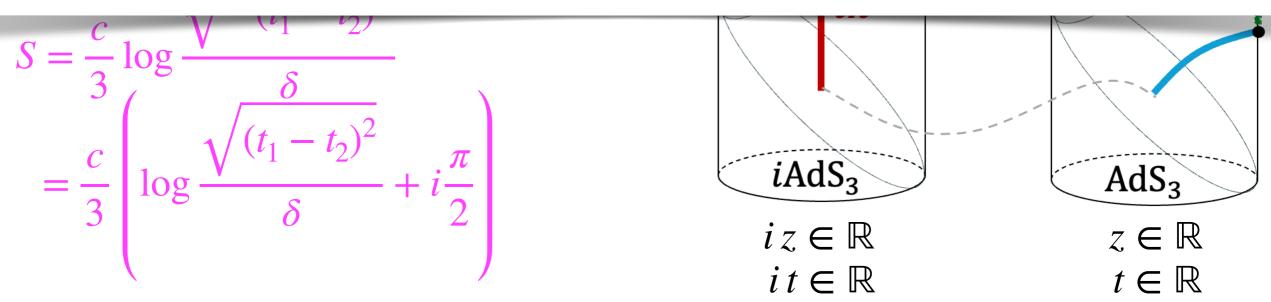


all Ryu-Takayanagi candidates to the timelike regime

If more than one surface in the timelike part, minimize over the real part


Outcome 2408.15752 [PRL] and 2507.17847 with Fabio Ori and Alexandre Serantes

Carriers of holographic timelike entanglement entropy probe complex bulk, e.g.



Outcome 2408.15752 [PRL] and 2507.17847 with Fabio Ori and Alexandre Serantes

Carriers of holographic timelike entanglement entropy probe complex bulk, e.g.

This shows that as a bulk tomographic probe temporal entangle is subtle. What else could it be good for?

Vision 2507.17847 with Fabio Ori and Alexandre Serantes

If one has a closed form expression for a function, then one also has its analytic continuation implicitly and often also explicitly, c.f. $\frac{c}{3} \log \frac{x_2 - x_1}{\delta}$

However, entanglement entropy is notoriously difficult to compute in quantum systems and even in holography one most often gets it numerically

As a result, our prescription for computing holographic timelike entanglement entropy allows to probe novel facets of entanglement entropy akin to how e.g. shear viscosity is encoded in Euclidean thermal correlators

New ideas: complexity

Krylov (spread) complexity: definition

2202.06957 by Balasubramanian, Caputa, Magan and Wu

Consider the time evolution operator acting on some initial state

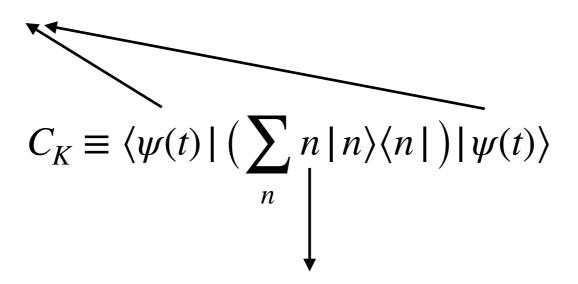
$$|\psi(t)\rangle = e^{-iHt}|R\rangle = |R\rangle + (-iH)t|R\rangle + \frac{1}{2}(-iH)^2t^2|R\rangle + \dots$$

It gives a sequences of orthogonal directions (Krylov basis) in the Hilbert space:

$$|0\rangle = |R\rangle \quad |1\rangle \sim H|R\rangle - \langle R|H|R\rangle |R\rangle \quad |2\rangle \sim H^2|R\rangle + \dots$$

that subsequent powers of t (time progression) trigger

$$C_K \equiv \langle \psi(t) | \left(\sum_{n} n | n \rangle \langle n | \right) | \psi(t) \rangle$$


Krylov (spread) complexity:

average order number of the Krylov basis element occupied via time evolution

Krylov (spread) complexity: properties

2503.10753 with Baiguera, Balasubramanian, Caputa, Chapman, Haferkamp, Halpern

Early times: $C_K \sim t^2$

Later times: possibility of growth in time via occupying higher and higher n

Sine dilaton gravity / (DS)SYK correspondence

2404.03535 by Blommaert, Mertens and Papalini

$$H_{\mathrm{SYK}} = i^{p/2} \sum_{1 \leq i_1 < \dots < i_p \leq N} J_{i_1 \dots i_p} \psi_{i_1} \dots \psi_{i_p}$$
 analogous to the `t Hooft limit in QCD
$$\int \mathcal{D}g \mathcal{D}\Phi \, \exp\left(\frac{1}{2} \int \mathrm{d}^2 x \sqrt{g} \left(\Phi R + \frac{\sin(2|\log q|\,\Phi)}{|\log q|}\right)\right)$$

It has black holes solutions that give rise to growth of holographic complexity

New results: complexity

Our result 2412.17785 with Papalini and Schuhmann

$$C_V \equiv \langle l \rangle = - \partial_{\Delta} \langle e^{-\Delta l} \rangle \Big|_{\Delta \to 0} = C_K$$

for all β and arbitrary q

Positioning 2412.17785 with Papalini and Schuhmann

$$C_V \equiv \langle l \rangle = -\partial_{\Delta} \langle e^{-\Delta l} \rangle \Big|_{\Delta \to 0} = C_K$$

for all β and arbitrary q

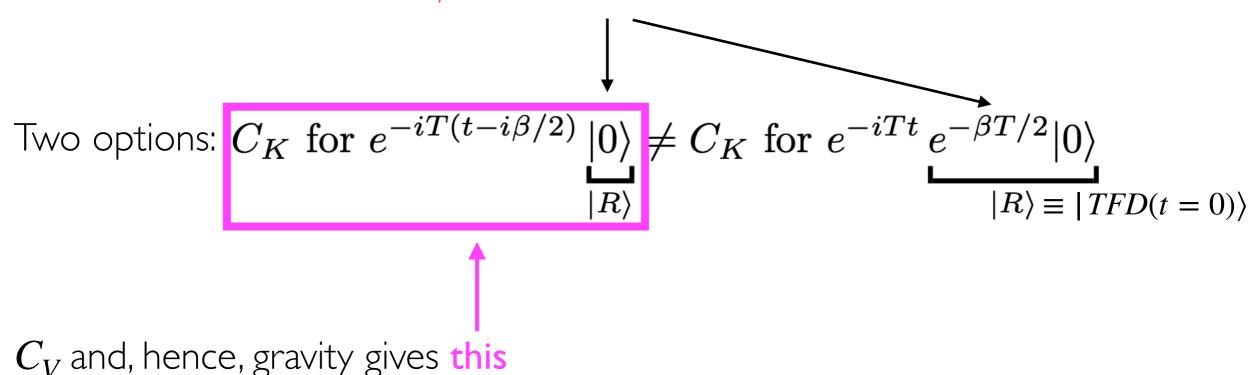
It generalizes pioneering results of 2305.04355 by Rabinovici, Sánchez-Garrido, Shir and Sonner from a single point $\beta \to 0$, $q \to 1$ to the full $\beta - q$ parameters plane

Our key insight I

2412.17785 with Papalini and Schuhmann

reference (starting) state used by

2305.04355 by Rabinovici, Sánchez-Garrido, Shir and Sonner

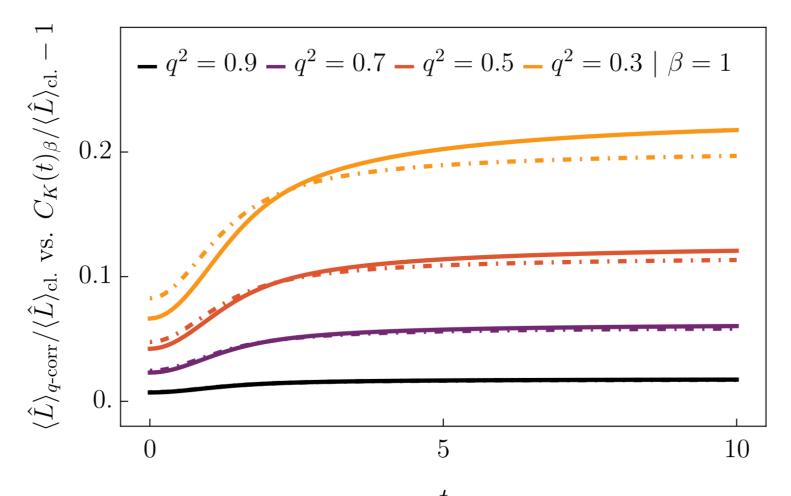

Two options:
$$C_K$$
 for $e^{-iT(t-i\beta/2)} \underbrace{|0\rangle}_{|R\rangle} \neq C_K$ for $e^{-iTt} \underbrace{e^{-\beta T/2} |0\rangle}_{|R\rangle \equiv |\mathit{TFD}(t=0)\rangle}$

Our key insight I

2412.17785 with Papalini and Schuhmann

reference (starting) state used by

2305.04355 by Rabinovici, Sánchez-Garrido, Shir and Sonner

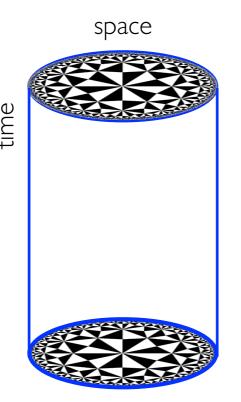


Consequence I: gravity assigns Krylov cost also to Euclidean state preparation!

Our key insight II

2412.17785 with Papalini and Schuhmann

Our result is valid for any q and series expanding around q=1 gives a first bulk quantum correction on top of the classical gravity result



Consequence II: bulk quantum correction transitions from t^2 to t behaviour

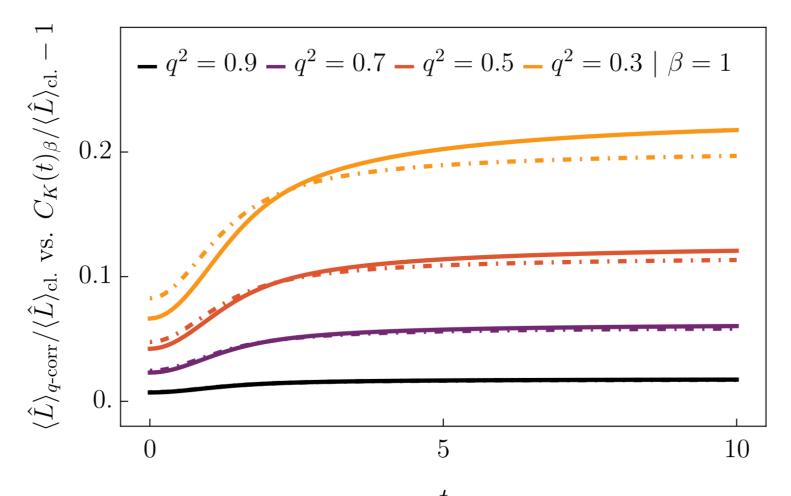
Speculation: it might a Krylov spread complexity of the bulk quantum field

hep-th/9711200 by Maldacena, hep-th/9802109 by Gubser, Klebanov, Polyakov, hep-th/9802150 by Witten, ...

semi-classical gravity with negative cosmological constant and certain matter content

strongly-coupled quantum systems with many degrees of freedom certain cousins of QCD certain critical systems (CFTs) regimes of Sachdev-Ye-Kiteav model and living on the boundary

The nature of the breakthrough: fully quantitative relation

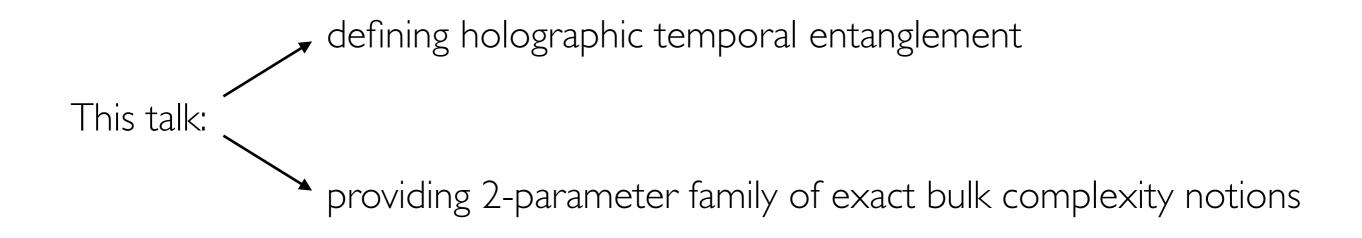

using gravity to learn about QFT (in particular, QCD)

using boundary quantum systems to learn about (quantum) gravity

Our key insight II

2412.17785 with Papalini and Schuhmann

Our result is valid for any q and series expanding around q=1 gives a first bulk quantum correction on top of the classical gravity result


Consequence II: bulk quantum correction transitions from t^2 to t behaviour

Speculation: it might a Krylov spread complexity of the bulk quantum field

Outlook

Summary and outlook

The past 18 years have witnessed an explosion of understanding about gravity coming from quantum information science and quantum many body physics

They are novel facets in the quest for geometrization of entanglement and complexity within the holographic paradigm