Barocaloric, topological and heavy-fermion systems — current research
and the potential of neutron techniques in their extension
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1. Ordinary MCE - DREAM
2. Rotational MCE (RMCE) - MAGIC+DREAM

3. Topological semimetals, short- and long-range
order - MAGIC+DREAM

4. Inelastic scattering, crystal field levels, HF systems
— MIRACLES + MAGIC

5. Summary
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DREAM
Bispectral Powder Diffractometer

Magnetism: studies of complex magnetic
structures, weak magnetic moments,
multiferroics, magneto-elastic coupling, interplay
between magnetic order and superconductivity,
quantum criticality, magnetism at high pressure,
orbital and charge ordering.
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Caloric effects
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Elastocalorics Barocalorics
+ Strain-driven changes in sample volume » Similar, but 3D hydrostatic pressure applied
» Large values at martensitic phase changes * MCE materials can also show a BCE

* Hysteresis



MCE determination

MCE from M-H isotherms
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RE-free magnetoelastic materials
for
efficient and environmentally friendly cooling

A=S8Sc, Hf; B=Ti, Ta, ... ; T=Mn, Co....

Why RE-free?
* non critical materials
* high abundance
* low price
* low supply risk

hexagonal structure of A,Fe,
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ESS Instruments

DREAM
Bispectral Powder Diffractometer

Magnetism: studies of complex magnetic
structures, weak magnetic moments,
multiferroics, magneto-elastic coupling, interplay
between magnetic order and superconductivity,
quantum criticality, magnetism at high pressure,
orbital and charge ordering.

ECE BCE
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ESS Instruments

maybe also for MCE materials ...

MAGiC
Magnetism Single-Crystal
Diffractometer

...complex interplay of magnetism and superconductivity in
unconventional superconductors (pnictides, cuprates, heavy-fermion
intermetallics and organic superconductors), multifunctionality in
magnetically-induced ferroelectrics, and frustrated or low-dimensional
magnetic materials featuring strong magnetic correlations or spin-liquid-
like quantum coherent ground states. Some of these materials cannot
be studied at present due to the lack of large enough single-crystalline
materials and/or weakness of the magnetic contribution to the diffraction
pattern.
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Anisotropic (Rotational) MCE (RMCE)
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Single crystals Euln,As,, Euln,P, , ... MAGIC? (+DREAM)

@ project: Extraordinary electronic transport in magnetic
g topological insulators and semimetals

Principal Investigator - prof. Dariusz Kaczorowski
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroctaw, Poland

‘N’*p_ IFM PAN coordinator — prof. Tomasz Tolinski

Institute of Molecular Physics, Polish Academy of Sciences, Poznan, Poland

supported by the National Science Centre (Poland) under research grant 2021/41/B/ST3/01141
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RMCE in Eu-based single crystals
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Euln,As,
» hexagonal unit cell (space group
P6./mmc)

> lattice parameters: a=b=4.207A,
c=17.889A

» it shows AFM order below
T,=16.1K with the Eu magnetic
moments aligned ferromagnetically
within the ab plane but antiparallel
in respect to adjacent Eu layers
along the c—axis

» it was predicted to be an axion
insulator for magnetic moments
within the ab plane, and a HOTI
for easy magnetization direction
along the c axis
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MAGIC? (+DREAM)
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Euln,P,

hexagonal unit cell (space group
P6./mmc)

lattice parameters: a=b=4.083A,
c=17.595A

it orders magnetically at 7T,=24K
with the Eu magnetic moments
aligned ferromagnetically within
the ab plane but tilted alternately
along the c—axis

ab initio simulation: it can be a
semimetal with a Weyl point for
in-plane magnetization and with a
Weyl nodal-line for magnetization
oriented along c-axis)
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Sarkar et al., Phys. Rev. Mat. 6, 044204 (2022)

ab initio simulation:

it is a trivial insulator with 7,=0 but

magnetic field can transform it to Weyl fermion with 7,=1 (it
can be a Weyl point for in-plane magnetization and a Weyl
nodal-line for magnetization oriented along c-axis)

MR (%)

MR (%)

wH (T)
Tolinski et al., Phys. Rev. B 110, 174425 (2024)



Short- and long-range order in Eu-based compounds
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ESS Instruments

MIRACLES
Backscattering Spectrometer

The configuration of the long time-of-flight primary
spectrometer and the large backscattering secondary
spectrometer will give unprecedented energy resolution in
accelerator-driven neutron source spectrometers, with an
outstanding performance and versatility due to the flexibility of
tuning energy resolution from a large dynamic range and
performing quasielastic and inelastic neutron scattering
experiment (QENS and INS) in a wide collection of operation
modes.

20



Inelastic Neutron Scattering — CeCoAl,

21

Joumal of Magnetism and Magnetic Materials 345 (2013) 243-248 10
Crystal field manifestation in inelastic neutron scattering, magnetic fIT e
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0 interactions may be not relevant in the compounds studied. The
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Fig. 2. The temperature effect on the INS spectra of CeCoAly at a wavelength of
Jr=734 and J; =15 A (inset). Arrows show schematically the drop of the quasie-
lastic contribution below the nrdering temperature.

analysis of the magnetic specific heat has shown that the
magnetic entropy reaches the theoretical value of RIn2 close to
T\=13.5K, which would be not expected for strong Kondo

interactions.
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Fig. 4. Zero field cooled magnetic susceptibility of CeCoAly; measured in H=1 kOe.
Inset: Inverse magnetic susceptihility [circles) and a calculation with the CEF model

(solid line). The dashed line corresponds to the molecular field parameters
obtained from the analysis of the INS spectra at 5 K (see text).
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Fig. 3. The INS spectrum of CeCoAl, at 5 K, before and after subtraction of the
spectrum of the nonmagnetic reference compound LaCoAls. The solid line drawn
through the open symbols represents a fit with a CEF model discussed within
the lext
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Inelastic Neutron Scattering — current research and plans (MIRACLES?)

Identification of the crystal field levels in intermetallics like:

PrTGe,;, NdTGe, (T — transition metal), R;Co,Ge,;, R;Co,Ge,;, and Pr,Rh,;Ge.

For example, for Pr,Rh;Ge, the intriguing and still unexplained question remains the
reason for the increase in the effective electron mass. The most probable cause of the
formation of the heavy-fermionic state in Pr,Rh;Ge can be a mechanism related to
dynamic crystal field interactions.

MIRACLES
Backscattering
Spectrometer

+

MAGIC

Magnetism Single-
Crystal Diffractometer

The configuration of the long time-of-flight primary spectrometer and the large
backscattering secondary spectrometer will give unprecedented energy resolution
in accelerator-driven neutron source spectrometers, with an outstanding
performance and versatility due to the flexibility of tuning energy resolution from a
large dynamic range and performing quasielastic and inelastic neutron scattering
experiment (QENS and INS) in a wide collection of operation modes.

...complex interplay of magnetism and superconductivity in unconventional superconductors
(pnictides, cuprates, heavy-fermion intermetallics and organic superconductors),
multifunctionality in magnetically-induced ferroelectrics, and frustrated or low-dimensional
magnetic materials featuring strong magnetic correlations or spin-liquid-like quantum coherent
ground states. Some of these materials cannot be studied at present due to the lack of large
enough single-crystalline materials and/or weakness of the magnetic contribution to the
diffraction pattern.
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INSTRUMENT

INSTRUMENT FEATURES

POSSIBLE EXPERIMENTS

s

DREAM
Bispectral Powder
Diffractometer

Magnetism: studies of complex magnetic
structures, weak magnetic moments,
multiferroics, magneto-elastic coupling,
interplay between magnetic order and
superconductivity, quantum criticality,
magnetism at high pressure, orbital and
charge ordering.

Laves Phases and other MCE/BCE/ECI\D
materials:

Importance of simultaneous information
on the crystalline and magnetic structure

J

.
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MAGIC (+ DREAM)
Magnetism Single-
Crystal Diffractometer

.

...heavy-fermion intermetallics and ....
materials featuring strong magnetic
correlations . Some of these materials
cannot be studied at present due to the lack
of large enough single-crystalline materials
and/or weakness of the magnetic contribution
to the diffraction pattern.

Magnetic structures of MCE and )
anisotropic MCE materials;

Nodal line semimetals (e.g. Euln,P,);
Short range order in topological materials;
non-colinear magnetic order

J

r

MIRACLES (+MAGIC)

Backscattering
Spectrometer

.

versatility due to the flexibility of tuning energy
resolution from a large dynamic range and
performing quasielastic and inelastic neutron
scattering experiment (QENS and INS) in a
wide collection of operation modes.

Inelastic scattering to determine CEF A
levels scheme; Kondo physics (PrTGes,
NdTGe;, R3Co,Ge,3, RsCo0,Ge,3, and
Pr,Rh;Ge, ...)

J
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