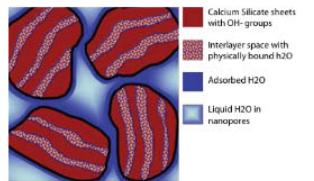


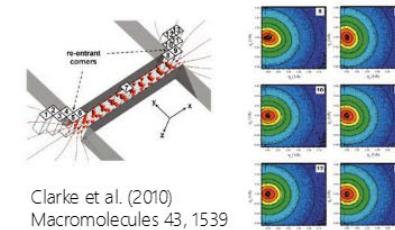
Opportunities for Large Scale Structures Research at the European Spallation Source

1st Workshop on Research & Innovation in Poland

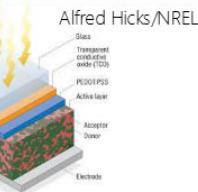

ANDREW JACKSON
HEAD OF LARGE SCALE STRUCTURES DIVISION

2025-07-07

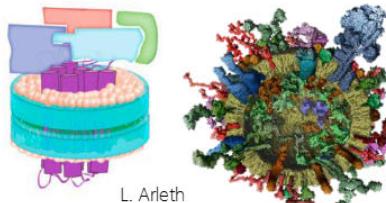
LSS Science Areas

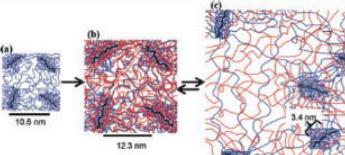


Multi-Component

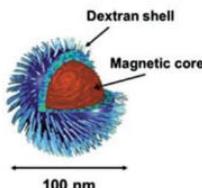


Allen AJ, Thomas JJ, Jennings HM. *Nature Materials*, 6(4), 311 (2007)

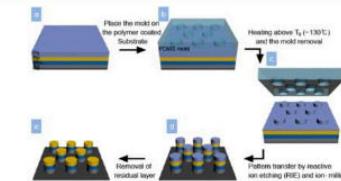

Non-Equilibrium


Operating Devices

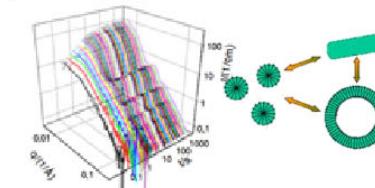
Bio-molecular Complexes



Hierarchical Structures

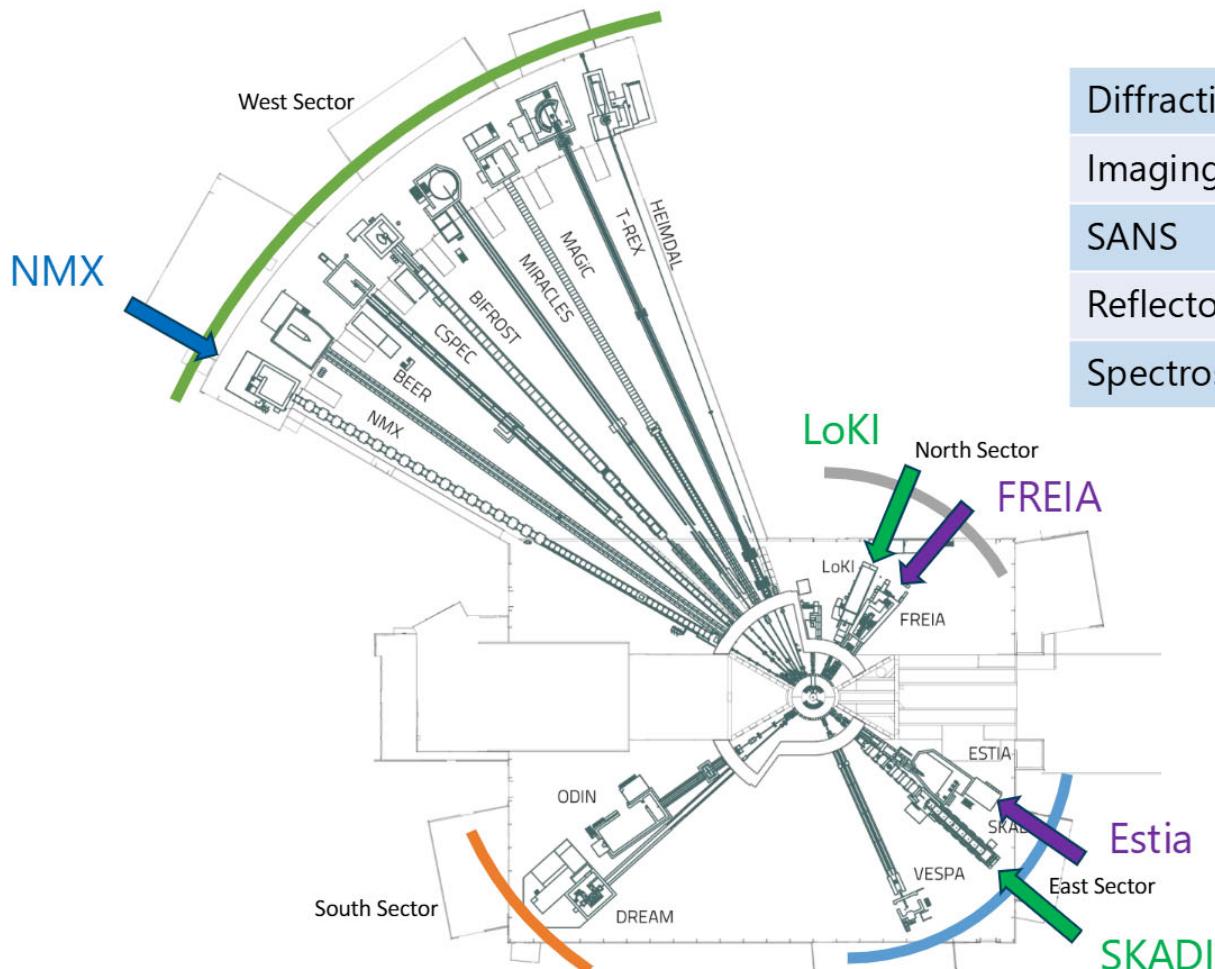

Waters et. al (2011) *Macromolecules* 44 5776

Hybrid Soft-Hard



Krycka, K. L., et al. *J. Appl. Phys.* 2011, 99, 07B513

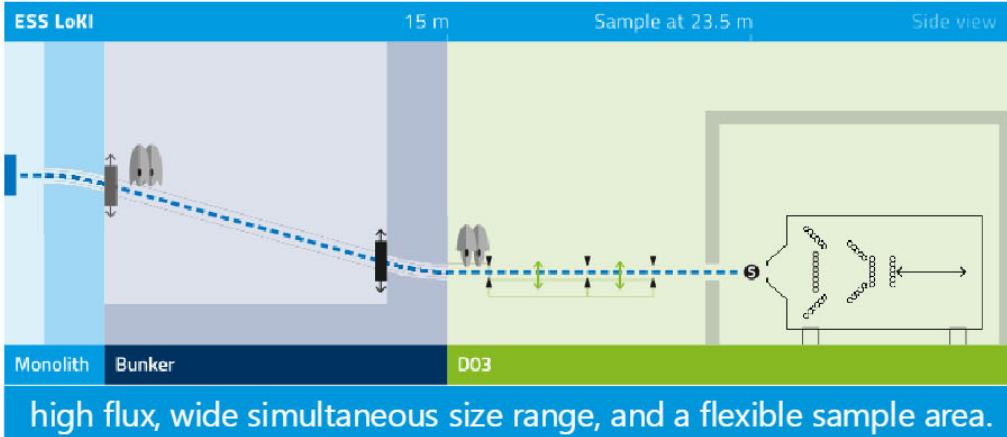
Patterned Materials


Kinetics

Bressel et al. (2010) *Coll. and Polym. Sci.* 288, 827

Large Scale Structures Instruments

Small Angle Neutron Scattering, Neutron Reflectometry & Neutron Macromolecular Crystallography



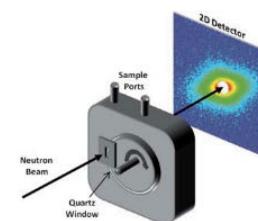
Diffraction	DREAM, HEIMDAL, BEER, MAGIC, NMX
Imaging	ODIN, TBL
SANS	LoKI, SKADI
Reflectometry	Estia, FREIA
Spectroscopy	BIFROST, CSPEC, T-REX, MIRACLES, VESPA

SANS
Reflectometry
Macromolecular Crystallography

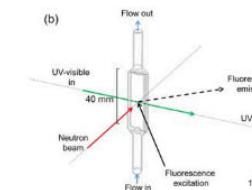
LoKI

SANS for Soft Matter, Materials, & Bio-Science

Goals:


- Investigate multiple length scale systems (simultaneously 0.5-300 nm)
- Aim to perform "single-shot" kinetic measurements on sub-second timescales. (5MW)
- Perform experiments that use flow e.g. rheology & microfluidics with small beam sizes
- High throughput of regular SANS measurements

2025-12-09


Changes over Multiple Length-Automated and Autonomous SANS:

Structures Under Shear

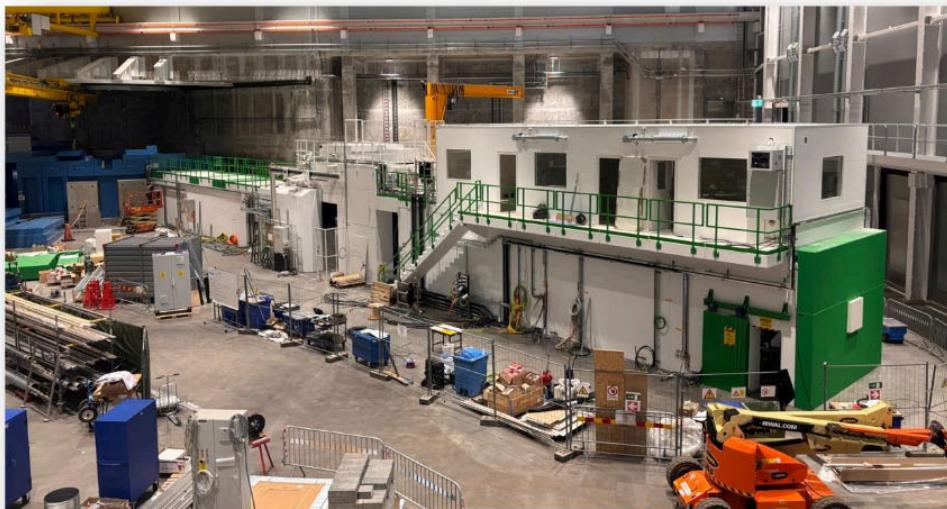
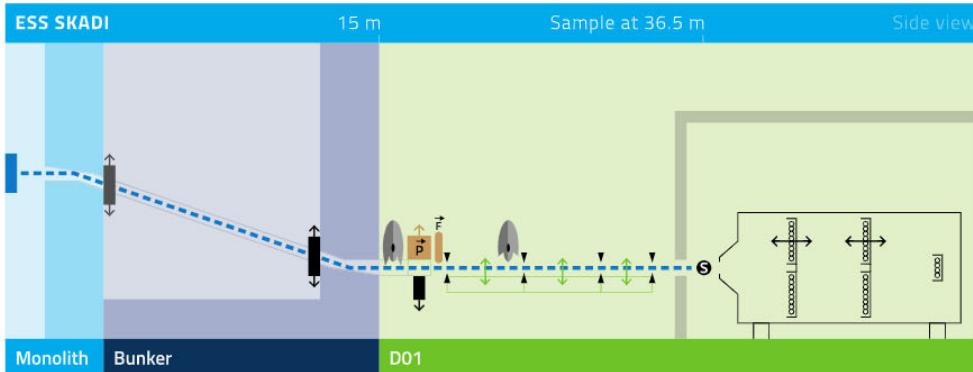
Soft Matter, 2011, 7, 9992

Flow cell with complementary techniques

Rev Sci Instruments 91, 075111 (2020)

Non-Equilibrium Studies:

Self-Assembly & Kinetics



Colloid Polym Sci, 2010, 288, 827

LoKI Quick Facts

Instrument Class	SANS
Moderator	Cold
Primary Flightpath	23.5 m, $L_1 = 3, 5, 8$ m
Secondary Flightpath	$L_2 = 1.5$ m, 3 m, 5-10 m
Wavelength Range	2-22 Å
Standard Mode (14 Hz)	
Bandwidth	7.5 Å [$L_2 = 10$ m] 10 Å [$L_2 = 5$ m]
Flux at Sample at 2 MW	4×10^8 n s ⁻¹ cm ⁻² [$L_1 = 3$ m] 5.6×10^7 n s ⁻¹ cm ⁻² [$L_1 = 8$ m]
Q-Range	0.01-2 Å ⁻¹ [$L_1 = 3$ m, $L_2 = 1.5, 5$ m] 0.005-2 Å ⁻¹ [$L_1 = 8$ m, $L_2 = 1.5, 10$ m]
Pulse Skipping Mode (7 Hz)	
Bandwidth	15 Å [$L_2 = 10$ m] 20 Å [$L_2 = 5$ m]
Flux at Sample at 2 MW	2×10^8 n s ⁻¹ cm ⁻² [$L_1 = 3$ m] 2.8×10^7 n s ⁻¹ cm ⁻² [$L_1 = 8$ m]
Q-Range	0.005-2 Å ⁻¹ [$L_1 = 3$ m, $L_2 = 1.5, 5$ m] 0.002-2 Å ⁻¹ [$L_1 = 8$ m, $L_2 = 1.5, 10$ m]

SKADI

Small-K Advance Diffractometer – Polarised SANS for Materials Science

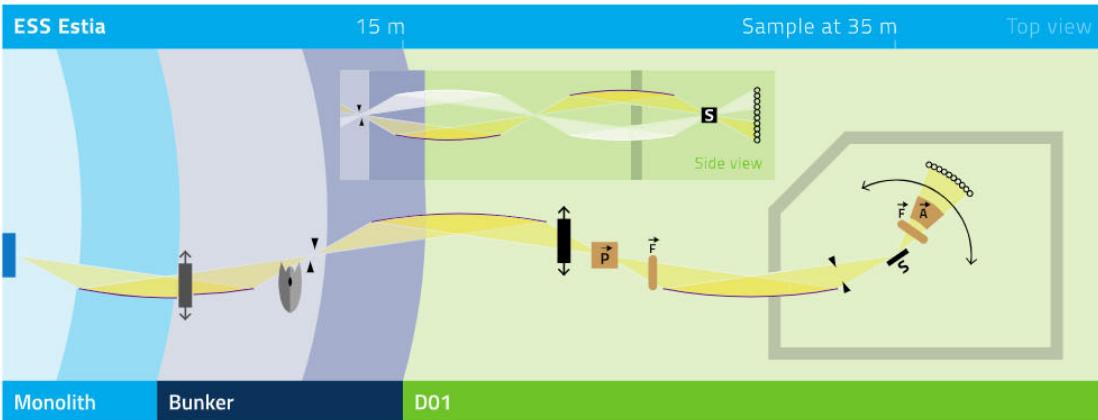
- Separate long/short wavelength polarization with supermirrors
- 4, 8, 14 and 20 m collimation settings
- VSANS: Down to $\sim 10^{-4} \text{ \AA}^{-1}$

Quick Facts

Sector	East
Beam Port	E03
Class	Polarized SANS
Moderator	Cold
Length	58 m
Q-Range	$10^{-4} - 1 \text{ \AA}^{-1}$
Flux at sample position	$7.7 \times 10^8 \text{ n s}^{-1} \text{ cm}^{-2}$

Standard Mode (14 Hz)

Wavelength Band	5 \AA
Wavelength Range	3 - 21 \AA
Momentum Resolution	$\Delta Q/Q = 2-7 \%$


Pulse Skipping Mode (7 Hz)

Wavelength Band	10 \AA
Wavelength Range	3 - 21 \AA
Momentum Resolution	$\Delta Q/Q = 1-7 \%$

ESTIA

Polarised Reflectometry with a very small beam footprint

Estia Quick Facts.

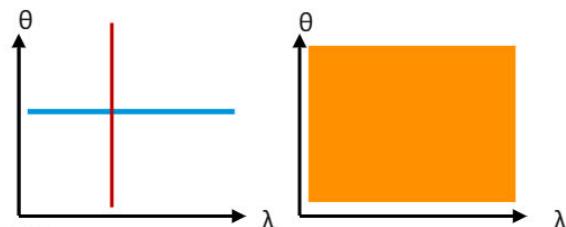
Estia Quick Facts

Instrument Class	Reflectometry
Moderator	Cold
Primary Flightpath	35 m
Secondary Flightpath	4 m
Wavelength Range	3.75–26 Å
Polarised Incident Beam	Optional
Polarisation Analysis	Optional
Sample Orientation	Vertical
Total Q-Range	0.001 to 3.15 Å ⁻¹ / -0.001 to -0.3 Å ⁻¹

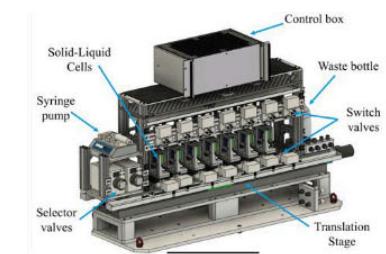
Standard Mode (14 Hz)

Bandwidth	7 Å
Flux at Sample at 2 MW ^a	$6 \times 10^8 \text{ n s}^{-1} \text{ cm}^{-2}$
Relative Q-Range	$Q_{\max} = 2.85 \times Q_{\min}$
Q-Resolution $\Delta Q/Q$	7.8%–3.0% over Q-range

2-Pulse Skipping Mode (4.7 Hz)

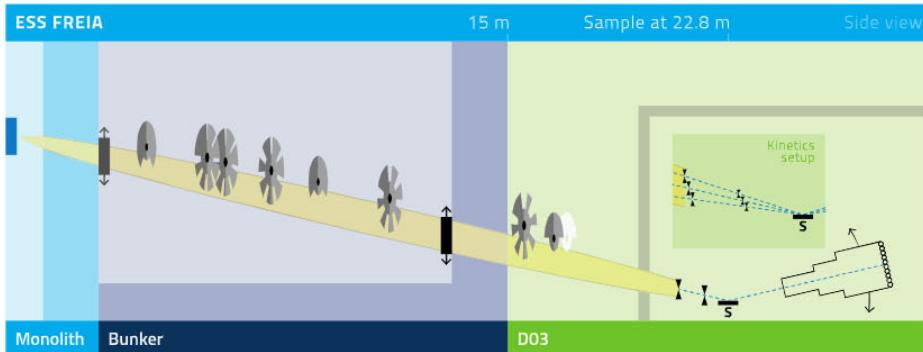

Bandwidth	21 Å
Flux at Sample at 2 MW ^a	$2 \times 10^8 \text{ n s}^{-1} \text{ cm}^{-2}$
Relative Q-Range	$Q_{\max} = 6.6 \times Q_{\min}$
Q-Resolution $\Delta Q/Q$	7.8%–1.3% over Q-range

^aFull-divergence beam averaged over 5(H) × 10(V) mm².

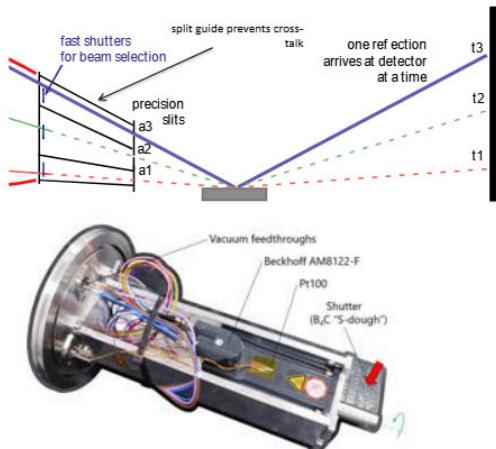

Reflectometers explore Q using either ToF at a fixed angle, or multiple angles at a fixed wavelength

$$Q = \frac{4\pi \sin\theta}{\lambda}$$

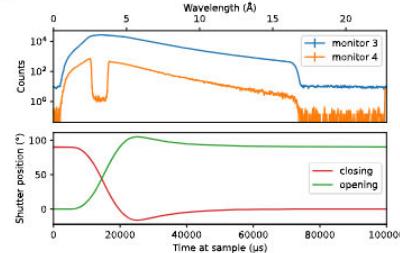
ESTIA uses a Selene guide to focus the neutrons, along with time of flight to look at both!



- **Selene neutron guide** projects tiny beam from Virtual Source
- **Small samples:**
 - Large divergence (1.5°x1.5°)
 - Samples down to 1x1 mm²


FREIA

A fast neutron reflectometer for soft matter and life science.



Fast-shutter project

Collaboration with Marek Jacewicz, Niklas Johansson & Tord Ekelöf (FREIA lab, Uppsala University), James Douth (ISIS, STFC) and Tommy Nylander & Ben Humphries (Lund University)

- used to rapidly change angles in between source pulses
- prototype tested with beam at ISIS (ZOOM)

FREIA Quick Facts

Instrument Class	Reflectometry
Moderator	Cold
Primary Flightpath	22.8 m
Secondary Flightpath	3.0 m
Polarised Incident Beam	Available as a foreseen upgrade
Sample Orientation	Horizontal
Representative Incident Beam Angles*	0.45°, 0.9°, 3.4° (full range 0.2 - 3.7° depending on angular resolution)

Standard Mode (14 Hz)

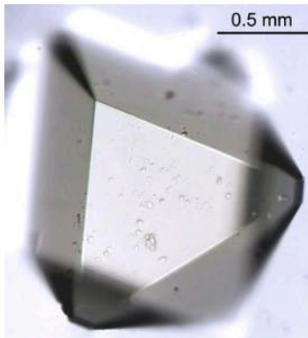
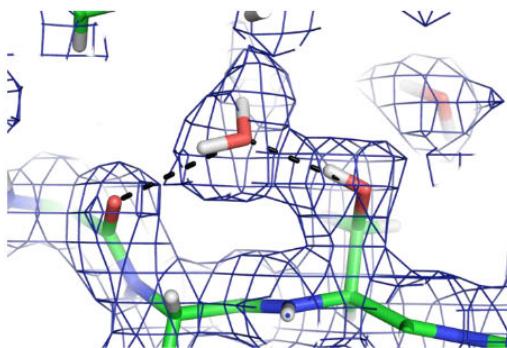
Wavelength Range	2-18 Å
Flux at Sample at 2MW*	1×10^5 , 5×10^5 , 7×10^6 n s ⁻¹ cm ⁻² [high res (WFM) mode] 1×10^6 , 4×10^6 , 6×10^7 n s ⁻¹ cm ⁻² [high flux mode]
Q-Range	0-1 Å ⁻¹ (solid samples) 0.0045-0.38 Å ⁻¹ (free liquids)

Q-resolution*

3-3.5% [high res (WFM) mode]
5-23% (across free-liquid Q-range) [high flux mode]

Pulse Skipping Mode (7 Hz)

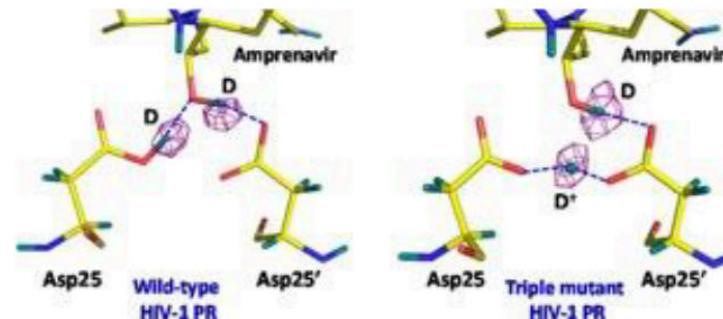
Wavelength Range	2-18 Å
Flux at Sample at 2MW*	5×10^5 , 2×10^6 , 3×10^7 n s ⁻¹ cm ⁻² [high flux mode]
Q-Range	0-1 Å ⁻¹ (solid samples) 0.002-0.38 Å ⁻¹ (free liquids)
Q-resolution	3-23% (across free-liquid Q-range) [high flux mode]

LUND UNIVERSITY

NMX

Macromolecular Crystallography


Oksanen, E et al. *J. R. Soc. Interface* 2009, **6** Suppl 5, S599-610.

- 👍 Hydrogens are visible
- 👍 No radiation damage
- 👎 Large crystals needed
- 👎 Data collection takes weeks
- 👎 Few instruments available

- Where are hydrogens important?
- Enzyme mechanisms
- Protein-ligand interactions
- Proton transport across membranes

Sample and detector robots installed and undergoing inspection for energisation

Sample Environment

Sample Changers

LoKI/SKADI

- Up to 48 narrow rectangular cuvettes
- Various options for different sizes/styles of cuvette
- Independent top and bottom temperatures
- Optional rotating sample holder for sedimenting samples
- *Future* : Peltier augmented sample racks for precise temperature control

Estia

- 7 position solid-liquid cell changer
- Small footprint / low volume solid-liquid cells

Hannah Burrall, Nico Paracini, Adrian Rennie

Large Scale Structures

Sample environment priorities

LOKI	SKADI	ESTIA	FREIA	NMX
<ul style="list-style-type: none"> HC (May 2026) <ul style="list-style-type: none"> Sample Changer Circulating baths (Julabo) Temperature readout box First/Early Science (April 2027) <ul style="list-style-type: none"> Rheometer NURF set up HPLC Pumps and Switches Syringe Pumps Stopped Flow cell SOUP (November 2027) <ul style="list-style-type: none"> SEC-SANS AF4 (grant?) Electromagnet Humidity chamber (?? Which one) Microfluidics Later <ul style="list-style-type: none"> Liquid/gas mixing supercritical EC cell Humidity cell extreme condition Vapor sorption (liquids) In-situ reaction corrosive Hydrostatic pressure cell Soft matter stress rig User/Grant led SEE 	<ul style="list-style-type: none"> HC (Jan 2027) <ul style="list-style-type: none"> Sample Changer Circulating baths (Julabo) Temperature readout box First/Early Science (December 2027) <ul style="list-style-type: none"> Warm bore magnet Flow cryostat Electromagnet Rotation stick Rheometer Stopped Flow cell Syringe pump HPLC pump Flexiprob : DLS Flexiprob : Foam Column SOUP (March 2028): <ul style="list-style-type: none"> SANS Magnet Cryostat or CCR Humidity chamber Later: <ul style="list-style-type: none"> SANS Magnet with PA Dilution insert He insert EC cell Vacuum furnace Niobium DAC high P cells Soft matter stress rig UHT furnace User/Grant led SEE 	<ul style="list-style-type: none"> HC (June 2026) <ul style="list-style-type: none"> Warm bore magnet Flow cryostat Ambient sample changer (Estia) Solid-Liquid cells + changer (manual cell loading) Electromagnet (maybe) First/Early Science (May 2027) <ul style="list-style-type: none"> HPLC/syringe pumps 6.5T magnet SOUP (December 2027) <ul style="list-style-type: none"> in-situ ellipsometry/ATR-FTIR EC cell (batteries, potentiostat) Environmental cell (humidity/temperature) Later <ul style="list-style-type: none"> User/Grant led SEE 	<ul style="list-style-type: none"> HC (May 2027) <ul style="list-style-type: none"> Langmuir trough Air-liquid troughs Solid-Liquid cells + changer First/Early Science (March 2028) <ul style="list-style-type: none"> Temperature controller HPLC/syringe pumps SOUP (May 2028) <ul style="list-style-type: none"> Additional solid-liquid cells and Langmuir troughs in-situ ellipsometry/ATR-FTIR multiwell troughs small volume/cooled troughs Later <ul style="list-style-type: none"> Sample changing robot Shear/confinement cells Rheometer Environmental chamber (humidity/temperature) User led SE including Liquid-liquid cells, Electrochemical cells + potentiostat, Overflowing cylinder, Humidity cell, WLS, GISANS (Flexiprobe). 	<ul style="list-style-type: none"> Provided by NMX

Deuteration and Crystallisation

Science Support Division

Chemical Deuteration At ESS

- Small organic molecules, monomers
- Lipids (e.g. POPC, SOPC, POPE)
- Surfactants (e.g. sugar-based)
- Novel organic molecules for various applications

Biological Deuteration At Lund University (Biol. Dept)

- Deuterated biomass from *E. coli*, *B. braunii*, *P. pastoris*
- Recombinant soluble proteins, plasmid DNA, "other"
- Yeast-derived lipids (total,p-lipid)

New
Deuteration
Chemist starting
soon

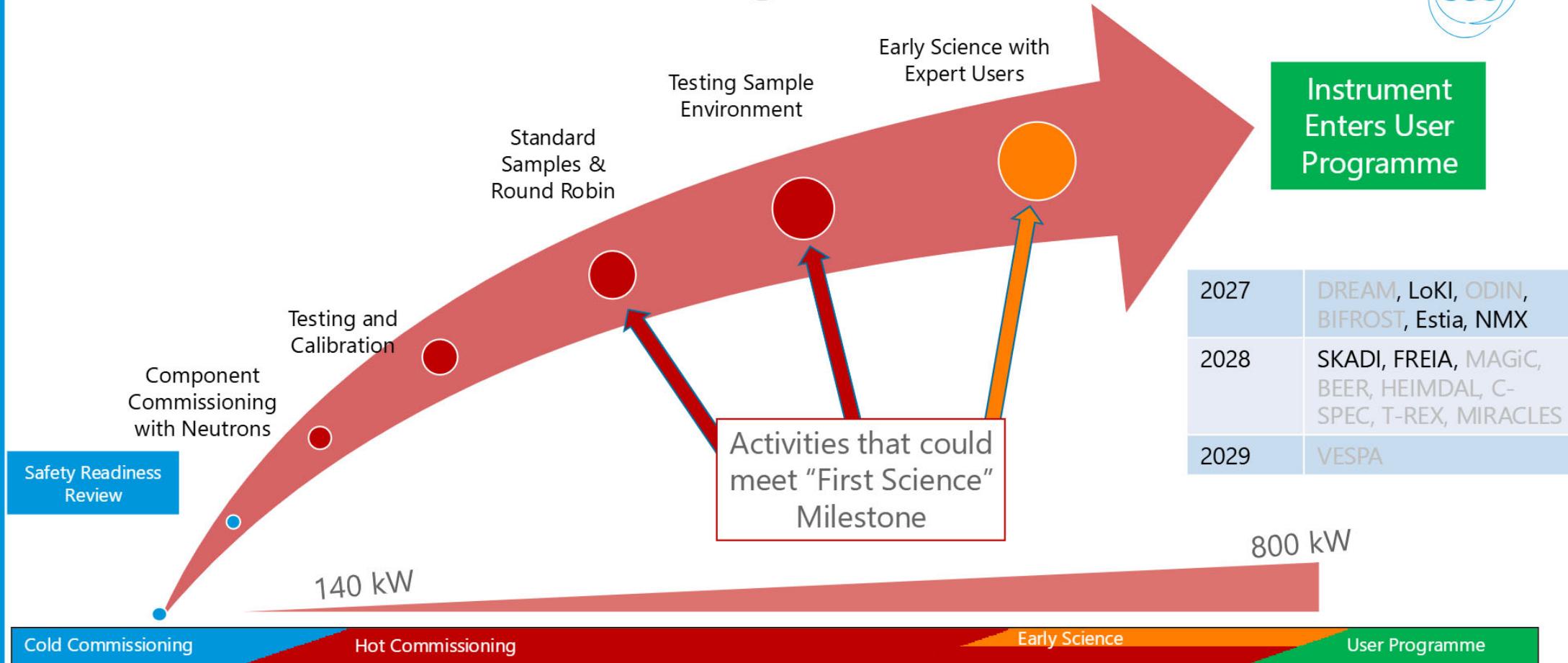
Hanna

Jia-Fei

0.75 RE @ LU 0.2 analysis @ ILL

LSS Division

Protein Crystallization NMX team at ESS & Lund University


- High- and low-throughput screening
- Fine screening in large volumes
- Support for room temperature crystal mounting & data collection
- X-ray testing (LU BAG at MAX lab)

Zoë

Swati

Towards the User Programme

LoKI, Estia, NMX :
Hot Commissioning Start : mid-2026
User Programme : late-2027

SKADI, FREIA :
Hot Commissioning Start : 2027
User Programme : late-2028

Large Scale Structures Team

LoKI (Partner : STFC)

Judith Houston (ESS, Instrument Scientist)

Santiago Bordin (ESS, Instrument Scientist – Jan 2026)

Hannah Burrall (ESS, Instrument Ops Engineer)

Estia (Partner : PSI)

Jos Cooper (ESS, Instrument Scientist)

Grace Causer (ESS, Instrument Scientist)

Felipe Lopes (ESS, Instrument Ops Engineer)

SKADI (Partners : LLB & FZJ)

Sebastian Jaksch (ESS/FZJ, Instrument Scientist)

Annika Stellhorn (ESS, Instrument Scientist Polarized SANS)

Tamires Gallo (ESS, Instrument Operations Engineer)

Milan Klausz (HUN-REN, Postdoc Detector Simulations)

Instrument Data Scientists (DMSC)

SANS : Oliver Hammond

Reflectometry : Nicolo Paracini

NMX : Aaron Finke

FREIA (Partner : STFC)

Tom Arnold (ESS, Instrument Scientist)

Ellen Wilson (LU/ESS, Postdoc XRR + FREIA support)

Instrument Operations Engineer (to recruit this year)

NMX

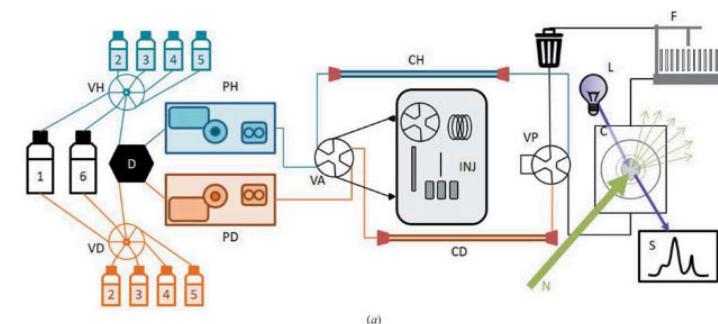
Esko Oksanen (LU/ESS, Instrument Scientist)

Justin Bergmann (ESS, Instrument Scientist)

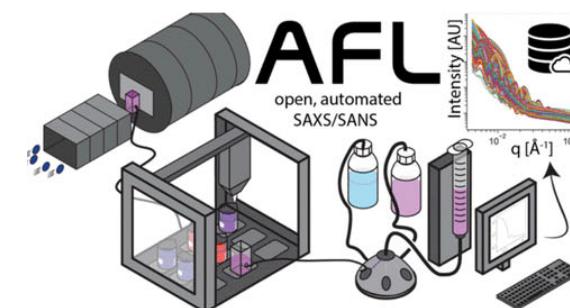
Swati Aggarwal (LU/ESS, Support Scientist)

Zoë Fisher (ESS, Senior Scientist Protein Biochemistry & Crystallography)

Future Upgrades and New Instruments ...



Instrument Scope Completion


- LoKI detector area completion
- FREIA fast shutter system
- Estia add-ons
 - spin-resonance flipper, space-time collimator, GISANS re-focusing, in-situ MOKE, ultra-focus+imaging
- NMX isotopic Gd for detectors.
- NMX extra detector
- SKADI detector area completion

Sample Environment & Software

SEC, AF4, Magnets, Rheology, Autosamplers, Humidity, Autonomous ML-driven measurements, ...

D22 SEC-SANS (J. Appl. Cryst. (2023). 56)

Chem. Mater. 2023, 35, 3, 846–852

Future Upgrades and New Instruments ...

Science Themes

Integrated Structural Biology and Biophysics

Bringing together multiple neutron techniques with computational methods and complementary techniques to answer complex structural biology and biophysics questions.

Amorphous/Semi Crystalline Materials

Extending Q range towards diffraction.

Formulations and Food

Complex multi-component systems require large parameter space studies with high throughput.

Surfaces and Interfaces

In-situ and in-operando 3D structural analysis of surfaces and interfaces

Environment

Molecular interactions within complex mixtures on surfaces and in bulk

Geology and Geomaterials

Connecting with imaging and microscopy length scales to enable the study of structures from nanometres through micrometres to millimetres

Industrial Research

Providing capacity and optimised instrumentation for industrial usage

Future Upgrades and New Instruments ...

Shaping the Future of ESS <https://indico.ess.eu/category/110/>

- **SAGA** – Dedicated surface scattering instrument for 3D studies of interfaces
- **Structural Biology Cluster** – 2nd NMX with DNP and a dedicated Bio-SEC-SANS
- **SMA** - High throughput SANS for industry and parametric studies
- **Yggdrasil** – Polarised SANS/WANS – targeting high Q / overlap with DREAM
- **ULL** – Membrane/Partially Ordered Systems Diffractometer
- **MIMER** - Solid-Liquid Bio-Reflectometer
- **Estib** – Small sample footprint reflectometer for in-situ and in-operando studies
- **SANS at very low Q** – VSANS/SEMSANS/USANS – possible upgrades to SKADI

Most concepts at early stages of development – ideas and input on science cases welcome!

Possible beamline positions fitting in existing experimental halls

Possible beamline positions requiring new or expanded experimental halls

Schematic of Possible Instrument Suite Expansion
Andrew Jackson 2024-10-16

Questions?

LoKI Progress

Installation Complete – June 2025

<https://ess.eu/article/2025/09/02/loki-instrument-installed-and-ready-commissioning-ess-testament-power>

LoKI instrument installed and ready for commissioning at ESS: A testament to the power of collaboration

SEPTEMBER 2, 2025

LoKI is getting ready for neutrons. Image: Ulrika Hammarlund/ESS

The installation phase of the LoKI instrument at ESS is now complete, and the instrument is set to begin its cold commissioning phase – a major milestone for ESS as it progresses toward full operations. LoKI, an advanced Small Angle Neutron Scattering (SANS) instrument, has been developed and delivered through a close collaboration between ESS and its UK In-Kind Partner, ISIS Neutron and Muon Source. This shared effort exemplifies the power of partnerships between scientific institutions.

https://www.isis.ac.uk/Pages/News25_Loki.aspx

LoKI instrument installed and ready for commissioning at ESS: A testament to the power of collaboration 02 Sep 2025

As part of the UK contributions to the European Spallation Source (ESS) in Sweden, ISIS is taking the lead in designing and delivering two key instruments: LoKI and FREIA. The installation phase of the LoKI instrument at ESS is now complete.

The instrument is set to begin its cold commissioning phase – a major milestone for ESS as it progresses toward full operations. LoKI is an advanced small angle neutron scattering instrument and will be one of the first to receive neutrons when the ESS enters operations. The beamline was designed and built at ISIS and then installed at the ESS. This shared effort exemplifies the power of partnerships between scientific institutions.

"This milestone celebrates more than just engineering achievement – it's a testament to the strength of the partnership between ISIS and ESS," says Andrew Jackson, Head of the Large Scale Structures Division at ESS. "At ESS, we've learned an enormous amount working closely with the ISIS team, who have delivered exceptional equipment and documentation. Their commitment and support at all levels have been vital to the success of this project."

LoKI is an instrument that will support soft-matter, materials, and life-science researchers that need to make advanced nanoscale measurements. Areas of research that will benefit from LoKI include: understanding the flow behaviour of complex fluids such as personal care products and pharmaceutical formulations; examining the formation and stability of lipid nanoparticles used for drug delivery; understanding the interactions and structure of proteins in solution; and studies of polymer composites and smart materials under strain.

LoKI detector installation

Related Sections

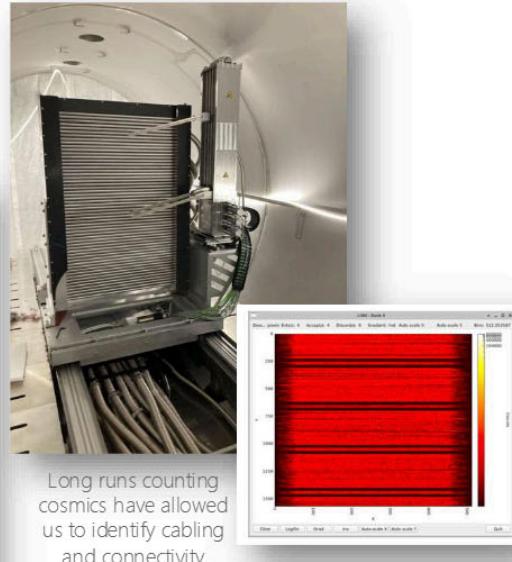
- ▶ News

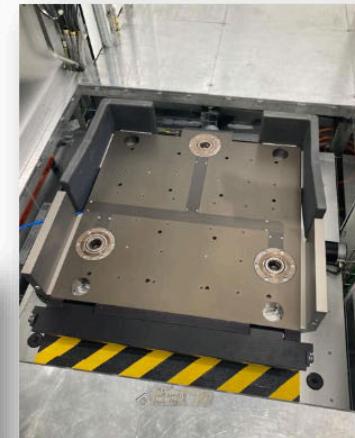
Related Content

- ▶ News Articles
- ▶ News in 2025
- ▶ Technical Highlights

LoKI Progress

Installation Complete


*Rear wall will be last thing we do, but it has been test fitted


Hannah and Clara inspecting slit system cabling before closing shielding

PSS Installed

Long runs counting cosmics have allowed us to identify cabling and connectivity issues on the detectors. All now resolved

Sample stack in place

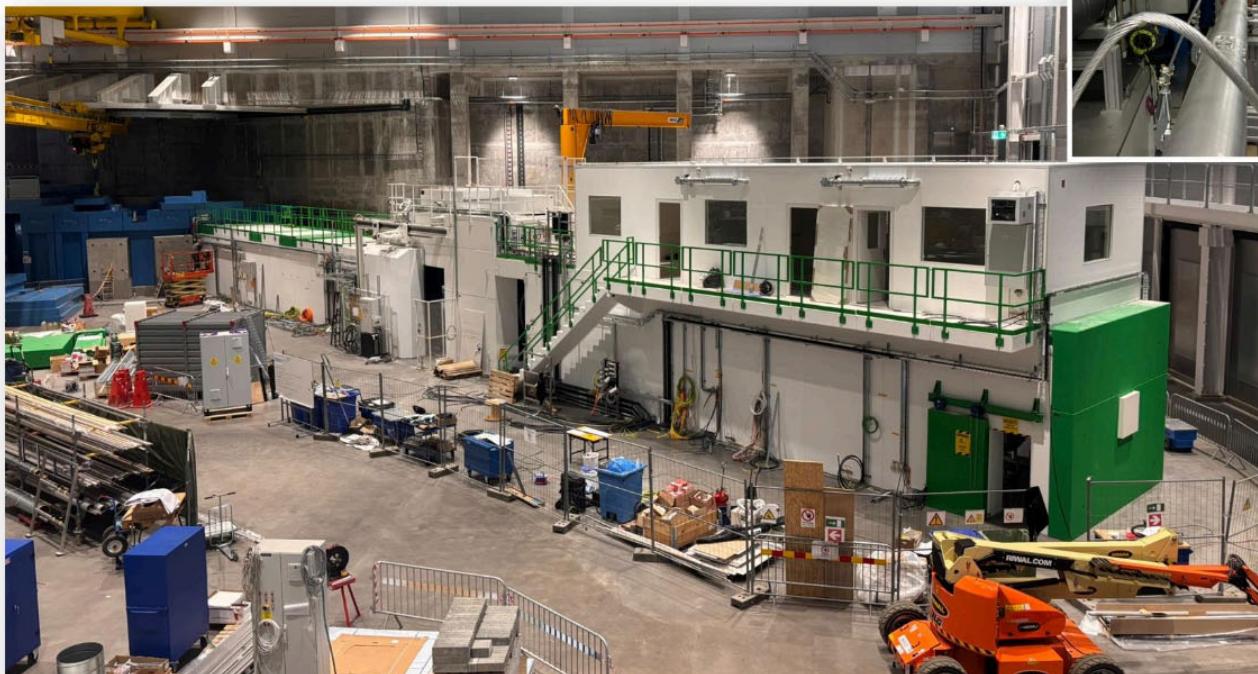
Andrew pretending to be useful by fixing 4 bolts

LoKI Progress

Getting ready for Hot Commissioning

Integrated Testing Completed – June to September

System Acceptance Review held – 19th September

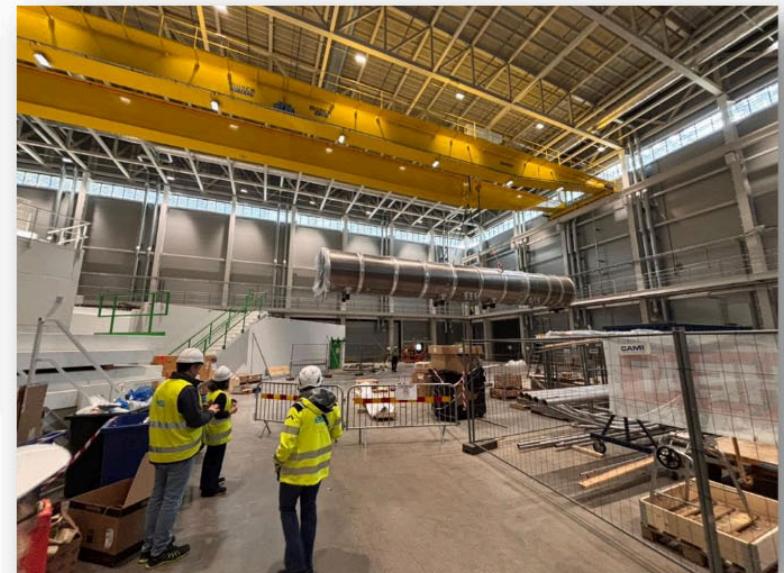

- Not approved due to outstanding issues arising from testing
 - Mostly controls issues
 - Detector module failure that has now been diagnosed and determined to be “expected” failure mode and the module is removed and awaiting maintenance.
- Review of completion of issues to be held by early December

Safety Readiness Review to be held – 3rd or 4th December

- PSS integration test completed
- Motion safety installation and integration to be done
- Quality and compliance process ongoing

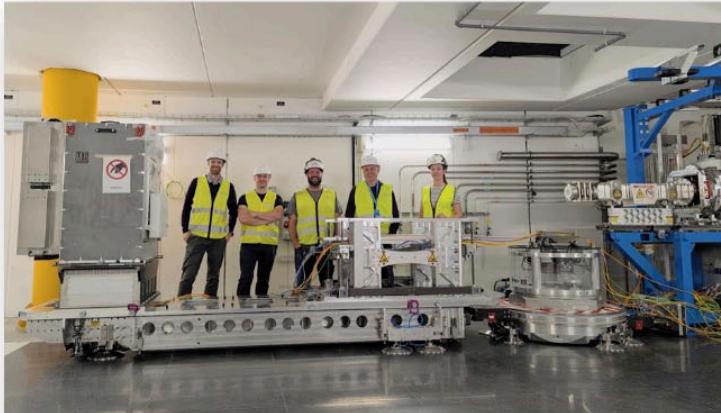
SKADI Progress

Installation well under way


Cave, Collimator Shielding, and Hutch Installed
Electrical and Utility installation started

TG3 before end of 2025
TG5/SAR before end of 2026

2025-12-09

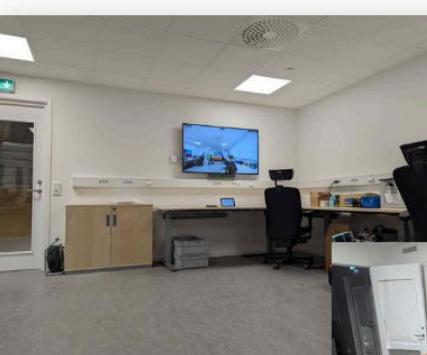

In bunker components installed

Detector vessel delivered and installed,
undergoing mechanical integration,
alignment, and testing. 21

Estia Status

Installation almost complete

Estia team after completion of testing of detector arm


Detector complete, installed, and initial testing with cosmics done

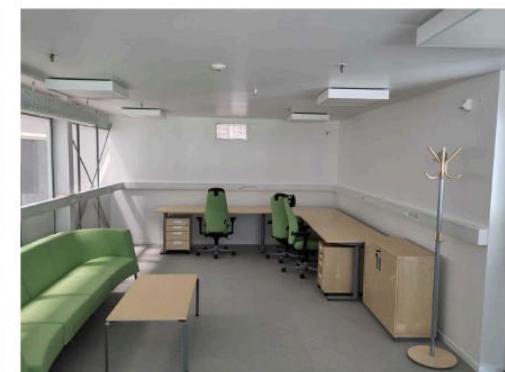
Hexapod installed

Felipe testing the microscope and wire-bonder in the sample prep area

Control Hutch fitted out

TG3 completed 3rd October 2025
TG5/SAR due in Q1 2026

NMX Status


Installation almost complete

Sample and detector robots installed and undergoing inspection for energisation

Sample prep lab fitted out and operational

Control Hutch fitted out and awaiting IT equipment