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Functional PBA magnets — examples & possible applications

What are PBAs?
Cyano-bridged, open-framework compounds: AM[P(CN)e]-nH,0
A = Alkali or ammonium cation (K*, Rb*, Cs*, NH;")
M[P(CN)6] = Two transition-metal (M, P) sites bridged by cyanide

Mixed-valence & flexible lattice - valence, spin, and structural switching

 External triggers: Temperature, pressure, light, humidity, E-field

» Several degrees of freedom to tune functionality: Tune metal ions, A-site cations, vacancies,
hydration etc.

 Room-temperature magnetism, photomagnetism, barocaloric and magnetocaloric effects, etc.



Magnetic thermal hysteresis of Charge-Transfer transition
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Magnetic thermal hysteresis of Charge-Transfer transition

lon | Spin | Unpaired Xm=T
State | electrons | cm®*-mol™K
Mn%**| HS 5 4.375
Fe®* LS il Q.375
Mn?* LS 1 0.375
Fe** HS 5 4.375
Mn3**| HS 4 3.00
Fe?* LS 0 0.00
Mn®* LS 2 1.00
Fe** HS 4 3.00
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Magnetic thermal hysteresis of Charge-Transfer transition

lon | Spin | Unpaired Xp+T
State | electrons | cm®*-mol™K 4.5
Mn?* | HS 5 4.375
Fe** LS il (375
Mn2* | LS 1 0.375 .
Fe** | HS 5 4.375 X 4.0
Mn®** | HS 4 3.00 i
Fe** | LS 0 0.00 g
Mn® | LS 2 1.00 -
Fe** | HS 4 3.00 £ 3.5
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lon State JT Active?
Mn** (HS) | d° (t3,¢7 No
Fe** (LS) | d° (t3,e)) No
Mn (HS) | d*(t3,e} i
(strong)!
Fe* (LS) | d°(t5,eg No




Evolution of structure across Charge-transfer transition temperature
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Coupled electronic and structural bistabilities
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Effect of Rb content on structure and Charge-transfer transition
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Intensity (arb. units)

Effect of Rb occupancy on HT structure
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Encapsulation of microcrystals in Polyvinylpyrrolidone (PVP)

Electrospinning technique

Syringe

SEM: Confirms the encapsulation of
microcrystals in PVP

Taylor cone

Polymer +
Microcrystal

dNiNd

Liquid jets
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Spun-mat (composite) with ~11-12%
microcrystals by weight. 0



Identical average structures in microcrystals and composites

Microcrystals: Rb, ;,Mn[Fe(CN).].H,O Composite: Rb, ,,Mn[Fe(CN).].H,0 in PVP
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What about the local structures in microcrystals and composites?

Microcrystals: Rb, ;,Mn[Fe(CN).].H,O Composite: Rb, ,,Mn[Fe(CN).].H,0 in PVP
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XANES Confirms Unchanged Local Structure

ASTRA @SOLARIS, Krakow
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A. Pacanowska et al., J. Mol. Lig. 437 (2025)

Crucially, XANES spectra for
microcrystals and the composite are
identical at RT, so the polymer does not
chemically perturb the metal sites, and
observed changes are not redox or
defect-chemistry artefacts.
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Rbg o,Mn[Fe(CN).].H,0

Enhanced Hysteresis in Polymer—Crystal Composites
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The thermal hysteresis of susceptibility
is broader in microcrystals embedded in

polymer, due to a significant shift of the
HT-LT transition to lower temperatures.

What is the possible origin of wider
thermal hysteresis in composites?
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Pressure-driven control of electronic and structural phases

Microcrystals: Ambient pressure Microcrystals in polymer = Tensile pressure

Microcrystals under hydrostatic pressure

Transition temperature:
T(p) = Tambiant +AT

c
Compressive stress increases the
transition temperatures
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S. Ohkoshi, et. al., Nat Commun, 14(1) (2023) )
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Unresolved: microscopic nature of magnetic order at low temperatures
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» Peak near 8-12 K reflects cooperative ordering of the

Mn3* sublattice.

» Amplitude decreases
Mn3*—N=C—Fe**—C=N-

as Fe(CN)s vacancies break
Mn3* exchange bridges.
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» Rb-rich samples - rapid rise + near-saturation - ferro-

/canted Mn3* order.

» Vacancy-rich sample - reduced moment, no saturation -

exchange dilution - short-range correlations.




Sawtooth lattice multiferroic BeCr,0,

Synchrotron x-ray diffraction pattern
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H. C. Mandujano, CMNK et al., Phys. Rev. B 7, 024422 (2023).

» One of the earliest compounds proposed to be a
multiferroic.
» Polycrystalline samples were prepared using a solid-

state reaction route.
» A small impurity of Cr,0; was found, which could be
refined and quantified.
D. E. Cox, et al, J. Appl. Phys. 40, 1124 (1969).

>

In sawtooth magnetic lattices, similar to triangular
lattices, we expect multiple competing magnetic orders,
including incommensurate magnetic structures, due to
magnetic frustration.




C/T(J mol™ K?)

» Specific heat data confirm the two anomalies observed in
magnetization measurements, in addition, a third anomaly
is observed around 7 K.
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» Based on these macroscopic measurements we were able
to construct this temperature vs magnetic field phase
diagram.




Magnetization confirms two magnetic transitions
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H. C. Mandujano, CMNK et al., Phys. Rev. B 7, 024422 (2023).

» Two magnetic anomalies were observed in from
magnetization measurements around 25 K, which evolve
with the fields.




Neutron scattering measurements
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A contour map of neutron powder diffraction patterns collected at several temperatures

H. C. Mandujano, CMNK et al., Phys. Rev. B 7, 024422 (2023).

» In contrast to the two anomalies observed around 25 K, » Additional peaks appear around 7 K, corresponding to the

in  macroscopic measurements, neutron powder third anomaly observed in heat capacity measurements.
diffraction data showed only one anomaly characterized

by the appearance of new Bragg peaks. » Keeping the parent structure to be Pbnm, the high-
temperature satellite is found to be k;. At low

temperatures, additional satellite peaks appear, which were
indexed as k,.




Magnetic structure solutions from neutron diffraction data
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» At 30 K (paramagnetic range), the refined structure is similar to that obtained » Below 7 K (T < Ty,), the magnetic structure is
from synchrotron X-ray data. incommensurate with a new propagation

vector k, = (0 0 0 0.908(1)).
> In the temperature range ~7 - 25 K (T, < T < T,), the magnetic structure is

found to be a cycloid with an incommensurate magnetic wave vector k, = (00
0.092(1)) plus a commensurate (0.5 0.5 0). This structure will induce
ferroelectric polarization along the crystallographic a - direction.

» The magnetic order in the temperature range
Tno<Tns (71 K range) could not be resolved
from powder diffraction data.




Using ESS: Instruments & Motivation
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» The possibility to measure neutron scattering on (©) "
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ESS Opportunities for Molecular Magnets & Frustrated Oxides

e Structural responses to external stimuli

— DREAM / BEER: high-resolution diffraction on milligram-scale samples to follow lattice changes under
temperature, pressure, hydration, and E-fields. It can resolve magnetic order, moment size, vacancy
effects, complex AFM / noncollinear order, and magnetoelastic coupling.

¢ Mixed-valence and low-energy excitations
—CSPEC: probe spin, orbital, and charge-transfer excitations, Jahn—Teller modes, coupling pathways,
exchange energies, spin-wave spectra, frustration-driven excitations.

¢ Vacancy and hydration effects
— HEIMDAL: combined diffraction + SANS to map vacancy ordering, short-range correlations, water-
dependent structural disorder, frustrated correlations, partial order, and spin-cluster signatures.

e BEER / High-Pressure Options
— Structural & magnetic transitions under pressure or field in both systems.

ESS Advantage
High flux + low background = full static and dynamic information from sub-mg samples
and weakly scattering magnets.



