
Division Head: Dr. hab. Anna Kaczmarska

Scientific Departments:

- The Belle II Experiment Department (NZ11)
- Department of Diffractive Processes (NZ13)
- The ATLAS Experiment Department (NZ14)
- The LHCb Experiment Department (NZ17)

- Department of Gamma-Ray Astrophysics (NZ12)
- Department of Cosmic Ray Research and Neutrino Studies (NZ15)

Staff: 56; Researchers: 46; PhD Students: 23;

MAIN RESEARCH ACTIVITIES

- Division research groups participate in leading particle and astroparticle physics projects conducted by large international collaborations at the world's foremost experimental facilities
- We are involved in all phases of these projects
 - initial design, optimization, and construction of detector systems,
 - development of research programs, active participation in data analysis,
 - maintenance and upgrading of advanced detector technologies.

Experiments at CERN: LHC, HL-LHC

v T2K

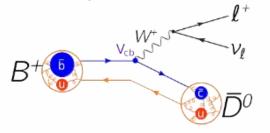
BNL: EIC

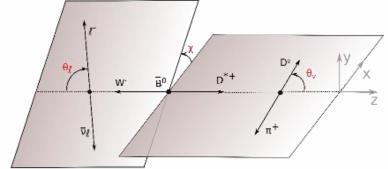
Astrophysical Observatories

Projects of Future Accelerators

RESULTS: ~260 publications (JCR)/year

The BELLE II Experiment Department (NZ11)


Division of Particle and Astroparticle Physics


Measurement of Differential Distributions of $B \rightarrow D^*\ell v$ at Belle

- Exclusive-Inclusive |Vcb| Puzzle:
- Long-standing tension between inclusive $(B \rightarrow X_c \ell v)$ and exclusive $(B \rightarrow D^{(*)} \ell v)$ determinations

 Each method relies on different theoretical frameworks → possible sign of new physics or incomplete understanding of QCD dynamics

Exclusive $|V_{cb}|$

- Belle Analysis (711 fb⁻¹, full dataset):
- Exclusive extraction using B→D*ℓv events.
- Angular observables fitted with two form-factor parametrizations: CLN and BGL.
- Results: stable **|Vcb|** around 40x10⁻³, consistent across both approaches.
- ~4% below inclusive averages ~42.2x10 $^{-3}$, leaving a ~3 σ global tension
- PRL 133, 131801 (2024); Phys. Rev. D 108, 012002 (2023)

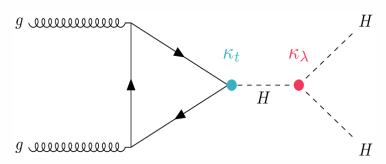
Results:

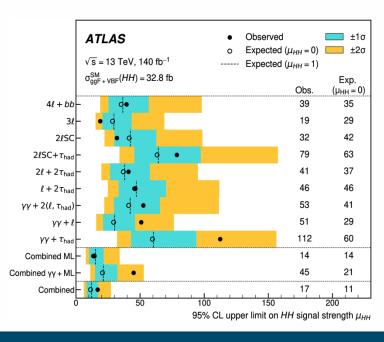
$$|V_{cb}|_{\rm CLN} = (40.2 \pm 0.9) \times 10^{-3}$$

 $|V_{cb}|_{\rm BGL} = (40.7 \pm 1.0) \times 10^{-3}$

$$|V_{cb}|_{\text{CLN}} = (40.13 \pm 0.27 \pm 0.93 \pm 0.58) \times 10^{-3}$$

 $|V_{cb}|_{\text{BGL}} = (40.57 \pm 0.31 \pm 0.95 \pm 0.58) \times 10^{-3}$




The ATLAS Experiment Department (NZ14)

Division of Particle and Astroparticle Physics

Search for non-resonant Higgs boson pair production (ATLAS, JHEP 08 (2024) 164)

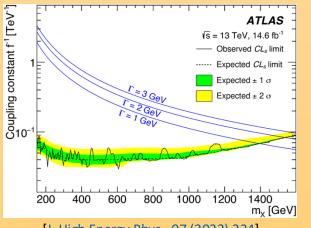
- Higgs pair production (HH) in the SM is ~1000× rarer than single-H production → not observable with current dataset
- Beyond-SM processes could enhance HH production
- Key to probing the Higgs self-coupling (λ_{HHH})
- First ATLAS analysis of this kind
 - multileptons in the final state
- Complements previous HH searches by adding missing channels
- Dataset: pp collisions at \sqrt{s} = 13 TeV, Run 2 (\approx 140 fb⁻¹)
- Data consistent with SM predictions
- Upper limit on HH production: μ < 17*σ_{SM}
- Constraints on Higgs self-coupling: narrowed limits on modifier HHH ($\kappa_{\lambda} = \lambda_{HHH}/\lambda_{SM}$)

Department of Diffractive Processes (NZ13)

Division of Particle and Astroparticle Physics

ATLAS Roman Pot detectors

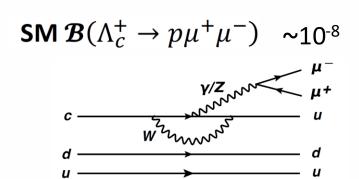
- 200 m from the collision point
- 1–3 mm from the LHC beam
- 2 systems: ALFA and AFP (V & H)

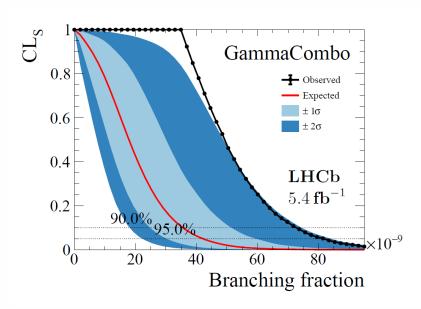

Elastic scattering pp → pp

- Sensitivity to fundamental properties of strong interactions in non-perturbative regime
- Results suggests presence of the long-sought Odderon exchange

y-induced axion-like particles (ALPs)

- Probing electroweak sector of SM at very high energies
- Searching for $\gamma\gamma \rightarrow \gamma\gamma$ interactions
- Results: limits on cross section and ALP coupling in a wide energy range

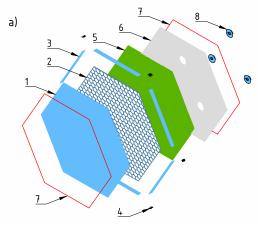



The LHCb Experiment Department (NZ17)

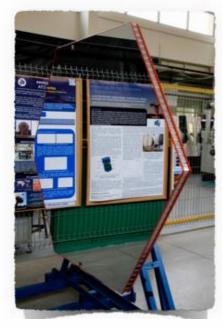
Division of Particle and Astroparticle Physics

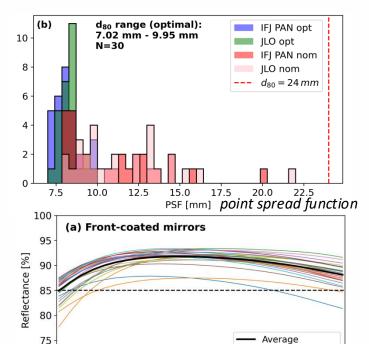
Search for very rare decay $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ at LHCb (Phys. Rev. D 110, 052007)

- Searches for rare decays can reveal tiny deviations from SM predictions, providing sensitive probes for new physics that may not be accessible through direct particle production
 - Rare decays like $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ allow for model-independent searches
- Result for Run2 data
- No evidence for the decay is found
 - $B(\Lambda_c^+ \rightarrow p\mu^+\mu^-) < 7.3 \times 10^{-8} \text{ at } 90\% \text{ CL}$
- Observed upper limit 2σ away from expected (background-only hypothesis)
- Future: observation with Run 3 data?



Department of Gamma-Ray Astrophysics (NZ12) Division of Particle and Astroparticle Physics


300


350

Composite mirrors for Medium-sized Telescopes of CTAO-ERIC

- 1. Front panel
- 2. Honeycomb
- 3. Side walls
- 4. Corners
- 5. Rear glass panel6. White adhesive foil
- 7. Silicon gasket
- 8. Mounting pads

400

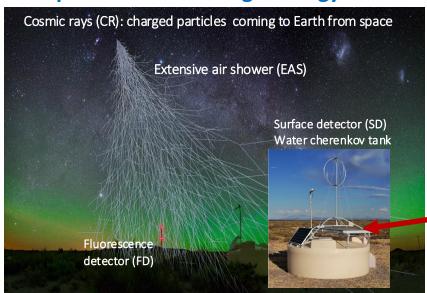
450

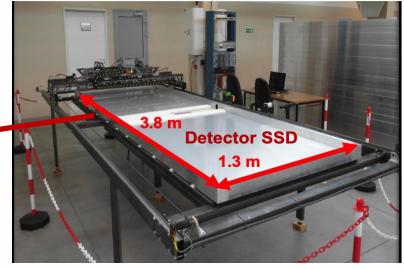
Wavelength [nm]

--- CTA requirement

500

550


- Manufacturing technologies of glass-aluminium spherical mirrors for MST have been developed at IFJ PAN since 2008
- Final mirror design a joint Polish-French concept
 (IFJ PAN, CEA-Saclay, DESY-Zeuthen) mainly based on the Polish solution.
- Technology transferred to industry production of 30 mirrors in cooperation with Diam Service
- Mass production of 670 mirrors as in-kind contribution to CTAO-ERIC shall start in 2026


Department of Cosmic Ray Research and Neutrino Studies (NZ15)

Division of Particle and Astroparticle Physics

Auger Prime – modernization of the Pierre Auger Observatory – precise measurement of the composition of ultra-high-energy cosmic rays (>10¹⁸ eV)?

Together with engineers from IFJ PAN, 228 (out of 1519) Scintilator Surface Detector (SSD) assembled and tested JINST 20 (2025) P08002

SSD deployment 2018 - 2021 (during COVID pandemic)

Upgrade Electronics 2020 - **2023**

Radio Detector: 2023 - **2024**

Modernization of 3000 km² array completed in 2024/2025 Operation of the Observatory extended to 2035

Other achievements (construction of equipment):

- Construction of mechanical structures and drive systems of two SST-1M gamma-ray telescopes
 - Astronomical observations in stereoscopic mode at the Ondrejov Observatory since 2022.
- Design and prototyping of front-coated and back-coated mirrors for CTAO-ERIC
- Upgrade I LHCb
 - RICH design of readout electronics, contribution to testing, construction and commissioning. Simulation of readout electronics response.
 - RTA Real Time Analysis, development of online reconstruction algorithms for new fully software trigger system
- New ATLAS Inner Tracker for HI -I HC
 - design & development of powering chain for silicon strip sensors and related services
 - Engaging collaboration across INP PAS departments (DAI mechanical design & engineering, CCB proton irradiation)

Other achievements:

- The Particle Physics Summer Student Programme (since 2013)
 - addressed to students of >= 2nd year of physics and similar fields, Poland and abroad
 - introduction to particle physics, opportunity to participate (for the first time) in real scientific research
- Active contribution to the Outreach and Popularization
 - European Researchers' Night, Masterclasses, Festival of Science, classes in schools, popularization movies, "Physics Couch" film series, scientific picnics etc.

The main goals of the Division for the coming years (1)

- ATLAS, LHCb experiments
 - Continuation of maintenance od the detectors and analysis of data taken in Run 3
 - Active involvement in the upgrade of detectors for HL-LHC (design, construction, sw)
- Belle II: Complete research and data taking of 50 ab⁻¹ dataset and contribute to the upgrade program beyond 50 ab⁻¹
- Contribution to MUonE (design and construction, simulation and reconstruction software, analysis of data from test runs, and from full run)
- Active participation in new collider and experiment projects, following the European Strategy for Particle Physics Update, in particular, FCC
- Contribution to ePIC@EIC (luminosity system, exclusive production of lepton pairs)
- Continuation of involvement in H.E.S.S., HAWC, and SST-1M gamma-ray observatories. Provide the main M&S items of the Polish in-kind contribution to CTAO-ERIC.

The main goals of the Division for the coming years (2)

- Continuation of research within AugerPrime and the upgraded T2K near detector, with participation in the Hyper-Kamiokande detector's installation.
- Development of P-ONE with the launch of the first detection line in 2025
- Increasing CREDO efforts towards more efficient operability of globally distributed radiation detectors and cosmic ray datasets
- Participate in the Einstein Telescope project, a third-generation gravitational wave detector

