Spin-crossover phenomena of a Jahn-Teller active Mn(III) complex [Mn(taa)]

Motohiro NAKANO

Research Center for Structural Thermodynamics Osaka University

OSAKA UNIVERSITY School of Science Graduate School of Science

Milestone paper on SCO phenomena

PHONON COUPLED COOPERATIVE LOW-SPIN ${}^{1}A_{1} \rightleftharpoons \text{HIGH-SPIN} {}^{5}T_{2} \text{ TRANSITION IN } [Fe(phen)_{2}(NCS)_{2}]$ AND $[Fe(phen)_{2}(NCSe)_{2}]$ CRYSTALS

(Received 5 July 1973)

J. Phys. Chem. Solids, 1974, Vol. 35, pp. 555-570.

 $\Delta_{trs}S = 48.8 \text{ J K}^{-1} \text{ mol}^{-1}$ >> R ln 5 (13.4 J K⁻¹ mol⁻¹)

Pure <u>spin entropy</u> is not sufficient! Where is another entropy source?

 \rightarrow Vibrational contribution

Central Dogma in thermally-driven SCO

- Entropy difference between HS and LS is dominated by vibrational contribution.
- Totally-symmetric breathing mode is important.

Spin-crossover temperature $T_{1/2} = \Delta_{trs} H / \Delta_{trs} S$

The effect of a magnetic field on the inversion temperature of a spin crossover compound revisited

Yann Garcia^a, Olivier Kahn^a, Jean-Pierre Ader^{b,*}, Alexandre Buzdin^b, Yann Meurdesoif^b, Maurice Guillot^c

Physics Letters A 271 (2000) 145-154

The effect of a magnetic field on the inversion temperature of a spin crossover compound revisited

Yann Garcia^a, Olivier Kahn^a, Jean-Pierre Ader^{b,*}, Alexandre Buzdin^b, Yann Meurdesoif^b, Maurice Guillot^c

Physics Letters A 271 (2000) 145–154

 H_3 taa = tris(I-(2- azolyl)-2-azabuten-4-yl)amine

Active vibrational modes

Jahn-Teller distortion in HS species

DFT-optimized structure and spin density isosurface with 0.005 e / a.u.³ Multis 2017

12

Dielectric behavior of [Mn^{III}(taa)]

Multis 2017

Electrostatics of [Mn^{III}(taa)]

Curie behavior of bare dipole: $p = (\mu^2 / 3k_B T) E_{loc}$

- μ molecular dipole
- $E_{\rm loc}$ local field

Macroscopic polarization of crystal: P = N pN number density of dipole

Local field $E_{loc} = E_{ext} + E_{Lorentz}$ = $E_{ext} + P / (3\varepsilon_{\infty}\varepsilon_{0})$ ε_{∞} high-frequency component

Definition of crystalline dielectric constant ε : $P = (\varepsilon - \varepsilon_{\infty}) \varepsilon_0 E_{\text{ext}}$

Electrostatics of [Mn^{III}(taa)]

Curie-Weiss law:
$$\varepsilon = \varepsilon_{\infty} + \frac{C}{T - \theta_{es}}$$

 $C = N \mu^2 / (3k_{\rm B}\varepsilon_0)$
 $\theta_{\rm es} = C / (3\varepsilon_{\infty})$ (electrostatic interaction)

Experimental data $\varepsilon_{\infty} = 3, C = 91 \text{ K}, \theta = 26 \text{ K}$

- \rightarrow estimated molecular dipole $\mu = 1.25$ D
- \rightarrow van der Waals' interaction $\theta \theta_{es} = 16 \text{ K}$

Normalization of population

 $\rho_0 + \rho_1 + \rho_2 + \rho_3 = 1$

- Δ LS-HS gap
- J_0 Potts-type interaction between HS species
- J_1 Ising-type interaction between HS and LS species

Internal energy: $U = \Delta(1 - \rho_0) + J_0(\rho_1^2 + \rho_2^2 + \rho_3^2) + 2J_1\rho_0(1 - \rho_0)$ Entropy: $S/R = \rho_0 \ln(2S_{LS} + 1) + (1 - \rho_0)\ln(2S_{HS} + 1) - \sum_{i=0}^3 \rho_i \ln \rho_i$

4-State Ising-Potts Model

Internal energy: $U = \Delta(1 - \rho_0) + J_0(\rho_1^2 + \rho_2^2 + \rho_3^2) + 2J_1\rho_0(1 - \rho_0)$ Entropy: $S/R = \rho_0 \ln(2S_{LS} + 1) + (1 - \rho_0)\ln(2S_{HS} + 1) - \sum_{i=0}^3 \rho_i \ln \rho_i$

SCF equations: $\partial F/\partial \rho_i = 0, \quad \partial^2 F/\partial \rho_i \partial \rho_j > 0 \quad (i, j = 1, 2, 3)$

3 Stable solutions:

Low-spin (LS) phase $\rightarrow \rho_0 \gg \rho_1 = \rho_2 = \rho_3$ High-spin (HS) phase $\rightarrow \rho_0 \ll \rho_1 = \rho_2 = \rho_3$ Ferrodistortively-ordered (FO) phase

$$\rightarrow \rho_0 \ll \rho_1 = \rho_2 < \rho_2$$

Extended Phase Diagram of [Mn^{III}(taa)]

Extended Phase Diagram of [Mn^{III}(taa)]

 $\Delta / k_{\rm B} = 90 \text{ K}$ $J_0 / k_{\rm B} = -36 \text{ K}$ $J_1 / k_{\rm B} = 125 \text{ K}$ $(\Delta_{\rm eff} = \Delta + 2J_1 = 340 \ k_{\rm B} \text{ K})$

Entropy counting with JT pseudo-rotation

$$\Delta S_{mag} = R \ln (2S_{HS} + 1)/(2S_{HS} + 1) = R \ln(5/3)$$

 $\Delta S_{JT} = R \ln 3$

Cf. 13.8 J K⁻¹ mol⁻¹ based on DSC (Y. Garcia, 2000)

Estimate of the vibrational contribution to the entropy change associated with the spin transition in the d⁴ systems [Mn^{III}(pyrol)₃tren] and [Cr^{II}(depe)₂I₂]^{\dagger}

Yann Garcia, *^{*a*} Hauke Paulsen, ^{*b*} Volker Schünemann, ^{*c*} Alfred X. Trautwein ^{*b*} and Juliusz A. Wolny ^{*bc*}

Phys. Chem. Chem. Phys., 2007, 9, 1194-1201

New estimate $\Delta S_{vib} = 9.1 \text{ J K}^{-1} \text{ mol}^{-1}$

Adiabatic calorimetry of [Mn^{III}(taa)]

Perturbation to 4-State Ising-Potts Model

- Pressure effect on χ
 - Clamp cell (Cu-Ti alloy) 0.1 MPa to 1.0 GPa Fomblin oil – hydrostatic pressure

• Dilution effect on χ and ε Mixed crystal [Mn_{1-x}Ga_x(taa)]

Disappeared transition under pressure

Isomorphic phase transition \rightarrow critical phenomana?

1.0 GPa

660

-36

1.2

60

Disappeared transition under pressure

Dilution effect in $[Mn_{1-x}Ga_x(taa)]$

diamond (z = 4) 0.43

Dilution effect in $[Mn_{1-x}Ga_x(taa)]$

Dispersion of ε due to pseudo-rotation

Conclusion

- [Mn^{III}(taa)] is a fascinating system involving two molecular bistabilities and a hidden ferrodistortive order (FO) phase.
- LIESST at low temperature may provide the hidden FO phase. Challenging!

Acknowledgements

Dielectric measurement

Prof. T. Matsuo (Osaka Univ.) Prof. O. Yamamuro (ISSP, Univ. Tokyo)

High magnetic field

Prof.Y. H. Matsuda (ISSP, Univ. Tokyo) Prof. S. Kimura (Tohoku Univ.) Prof.Y. Narumi (Osaka Univ.)

High pressure

Prof.Y. Hosokoshi (Osaka Pref. Univ.)

Spin-crossover (SCO) phenomena

Octahedral transition metal complex

Mn^{III} SCO complex [Mn(taa)]

Raman spectra of [Mn^{III}(taa)]

Multis 2017

35

Raman spectra of [Mn^{III}(taa)]

Multis 2017

36

Crystal structure of [Mn^{III}(taa)]

HS phase

space group I-43d (cubic)

Z = 16

a = 2.0309 nm

H-T phase diagram of [Mn^{III}(taa)]

38