UHE photon interaction: The Uncertainties. CREDO Inauguration Meeting

Jilberto Zamora-Saá Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Russia.

August 30, 2016

1/20

Contents:

Magnetic Monopoles

Why Magnetic Monopole? \Rightarrow Electric charge has to be guantized.

Paul Dirac showed, that if "at least" one magnetic monopoles exist, then the electric charge is necessarily quantized:

$$e \cdot g = n \cdot \frac{\hbar c}{2} \quad \Rightarrow \quad g = n \cdot \frac{\hbar c}{2e}$$

There are no predictions of their mass in the original Dirac theory.

- In Grand Unification Theories the mass of MM can be estimated:
 - Magnetic Monopoles would have masses from 10^5 until 10^{17} GeV.

Due to the large expected masses, GUT monopoles can only be searched in High Energy Experiments as IceCube, ANTARES, Pierre Auger, Baikal-GVD and CREDO. Heavy Dark Matter: 000000 Magnetic Monopoles

References

Magnetic Monopoles

Why Magnetic Monopole? \Rightarrow Electric charge has to be quantized.

Paul Dirac showed, that if magnetic monopoles exist then electric charge is necessarily quantized:

$$e \cdot g = n \cdot \frac{\hbar c}{2} \quad \Rightarrow \quad g = n \cdot \frac{\hbar c}{2e}$$
 (1)

There are no predictions of their mass in the original Dirac theory.

In Grand Unification Theories the mass of MM can be estimated:

• Magnetic Monopoles would have masses from 10^5 until 10^{17} GeV.

Due to the large expected masses, GUT monopoles can only be searched in High Energy Experiments as IceCube, ANTARES and Pierre Auger, Baikal-GVD and CREDO.

If MM exist Maxwell's equations become symmetrical and invariant under a Dual Transformation:

 $\vec{E'} = \vec{E}cos(\alpha) + c\vec{B}sin(\alpha)$; $c\vec{B'} = c\vec{B}cos(\alpha) - \vec{E}sin(\alpha)$

 $cq'_e = cq_e cos(\alpha) + q_m sin(\alpha)$; $q'_m = q_m cos(\alpha) - cq_e sin(\alpha)$

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho_e}{\epsilon_0} \quad ; \quad \vec{\nabla} \times \vec{B} = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} + \mu_0 \vec{J}_e$$
$$- \vec{\nabla} \times \vec{E} = \frac{\partial \vec{B}}{\partial t} + \mu_0 \vec{J}_m \quad ; \quad \vec{\nabla} \cdot \vec{B} = \mu_0 \rho_m$$

Magnetic Monopoles

References

Magnetic Monopoles in the Earths Electric-Magnetic Fields

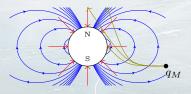
The symmetry in the Maxwell equation implies a symmetrical Lorentz force:

$$\vec{F} = q_e \left(\vec{E} + \vec{v} \times \vec{B} \right) + q_m \left(\vec{B} - \frac{v}{c^2} \times \vec{E} \right)$$

Ultra Hight Energy Photons

References

Magnetic Monopoles


Magnetic Monopoles in the Earths Electric-Magnetic Fields

The symmetry in the Maxwell equation implies a symmetrical Lorentz force:

$$\vec{F} = q_e \left(\vec{E} + \vec{v} \times \vec{B} \right) + \qquad q_m \left(\vec{B} - \frac{v}{c^2} \times \vec{E} \right)$$

 $q_m \vec{B}$

Accelerated in galactic and extragalactic magnetic fields.

$$-q_m\left(\frac{v}{c^2}\times\vec{E}\right)$$

Spiral motion

Heavy Dark Matter: 0000000 Magnetic Monopoles References

Magnetic Monopoles in the Earths Electric-Magnetic Fields

The symmetry in the Maxwell equation implies a symmetrical Lorentz force:

$$\vec{F} = q_e \left(\vec{E} + \vec{v} \times \vec{B} \right) + q_m \left(\vec{B} - \frac{v}{c^2} \times \vec{E} \right)$$

If there were no galactic magnetic field, one would expect monopoles in the galaxy to have velocities of the order of 10⁻³c, but there is, then:

 $q_m \vec{B}$

$$v = \begin{cases} 10^{-3}c \left(\frac{10^{17}GeV}{M_M}\right)^{1/2} & \text{if } M_M \ge 10^{11}GeV \\ c & \text{if } M_M \le 10^{11}GeV \end{cases}$$

Ultra Hight Energy Photons

References

Magnetic Monopoles

Magnetic Monopoles in the Earths Electric-Magnetic Fields

$$-q_m\left(\frac{v}{c^2}\times\vec{E}\right)$$

Some natural question arises: Is there a MM synchrotron radiation (Electric-Bremsstrahlung)? Catastrophic emission, can we expect the same for MM?

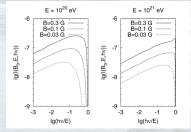


Figure: Bremsstrahlung spectral distribution (P. Homola et al. CPC 173 (2005) 71-90).

Magnetic Monopoles

Ultra Hight Energy Photons

References

Magnetic Monopoles in the Earths Electric-Magnetic Fields

$-q_m\left(\frac{v}{c^2}\times\vec{E}\right)$

Some natural question arises:

If there is Catastrophic emission, What about energy loss?

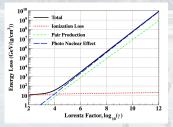


Figure: Energy loss of a magnetic monopole in air as a function of its Lorentz factor (T. Fujii for Pierre Auger Collaboration)

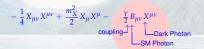
Is dark matter so dark?

Is dark matter so dark?

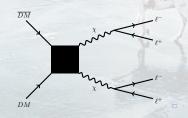
Motivations of Very Heavy Dark Matter:

- Observation of Ultra High Energy Cosmic Rays.
 - The source of these particles can not be in a distance larger than ~ 50 [Mpc], otherwise, interaction with CMB and IR photons considerably reduces the energy of the primary particles (GZK cutoff at energies around $\sim 10^{18}$ to 10^{20} [eV]).
 - In fact, observation shows a local minimum in the spectrum around these energies, but unexpectedly it rises again at higher energies.
- N. Hayashida et al. reports a excess of 4% for UHECRs with energies ~ 10¹⁸ [eV] in the direction of the Galactic Center and Cygnus region.

■ = = ● 9 Q @ 11/20
 Heavy Dark Matter:
 Ultra Hight Energy Photons

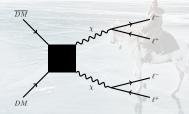

 0000000
 00●0000000

Dark Photon


Is dark matter so dark?

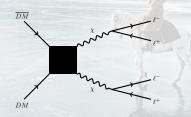
Is over there a hypothetical elementary particle called dark photon X?, which carries the electromagnetic force to dark matter.

 $\mathcal{L} \sim -\frac{1}{4} W^a_{\mu\nu} W^{a,\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \frac{1}{2} \frac{m^2_W}{g^2} (-g W^3_\mu + g' B_\mu)^2 + \frac{1}{2} m^2_W (W^1_\mu W^{1,\mu} + W^2_\mu W^{2,\mu})^2 + SM \ matter \ and \ Higgs \ terms$


It is important to note, that the addition of a new U(1) symmetry group, not give extra information about DM nature (fermion, scalar, etc).

Is dark matter so dark?

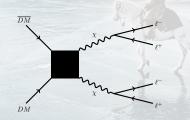
Which kind of processes are hidden in the Black-Box?


- $\blacksquare \Rightarrow Depend on the MODEL:$
 - LanHEP[Sema]: Program for Feynman rules generation in momentum representation.

Is dark matter so dark?

Which kind of processes are hidden in the Black-Box?

- Depend on the MODEL:
 - LanHEP[Sema]: Program for Feynman rules generation in momentum representation.
 - MicrOmegas[Semb]: Code to calculate properties of cold dark matter (WIMP) in a generic model of particle physics.



Is dark matter, so dark?

Which kind of processes are hidden in the Black-Box?

- Depend on the MODEL:
 - LanHEP[Sema]: Program for Feynman rules generation in momentum representation.
 - MicrOmegas[Semb]: Code to calculate properties of cold dark matter (WIMP) in a generic model of particle physics.

At this point, we can simulate the process involving dark matter and calculate the cross section and production rates in terms of their couplings.

	Dark	Matter:
0000000		

Is dark matter so dark?

How we can connect it, with the experiments?

- Can we constrain the dark photon decay angle with some global detection strategy?
 - For relativistic Dark Photons $\theta = 2/\gamma$ become very small (almost zero).
- If we can detect an extended front of simultaneous low energy particles (super-preshowers), could it be a unique signature of Dark Photons? at high energy scale.

■ No Detection \Rightarrow Constrain over parameters as D_s , M_{DP} , and couplings.

■ Detection \Rightarrow Estimation of M_{DM} , couplings.

Conclusions:

A deep study of the Magnetic Monopoles synchrotron radiation have to be done. P. Homola (Krakow), D. Alvarez & J. Zamora (Dubna).

A full simulation of the production and processes related with Dark Photon will be done. P. Homola (Krakow), F. Rojas (South Hampton U) & J. Zamora (Dubna).

Thank You

18/20

Backup

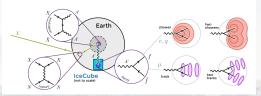


Figure: Feng, Jonathan. et al. [FST16a]

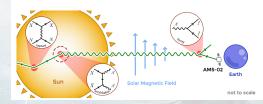


Figure: Feng, Jonathan et al. [FST16b]

References I

Jonathan L. Feng, Jordan Smolinsky, and Philip Tanedo, *Dark Photons from the Center of the Earth: Smoking-Gun Signals of Dark Matter*, Phys. Rev. **D93** (2016), no. 1, 015014.

_____, Detecting dark matter through dark photons from the Sun: Charged particle signatures, Phys. Rev. **D93** (2016), no. 11, 115036.

A. Semenov, LanHEP: A Package for the automatic generation of Feynman rules in field theory.,

http://theory.sinp.msu.ru/~semenov/lanhep.html.

_____, MicrOMEGAs: a code for the calculation of Dark Matter Properties including the relic density, direct and indirect rates in a general supersymmetric model and other models of New Physics ., https://lapth.cnrs.fr/micromegas/.