Cherenkov telescopes hunting for super-preshowers

D. Gora* * Humbold University, Berlin, Germany

Outline:

- Motivation

- Basic principle: detection of gamma-rays by imaging atmospheric Cherenkov telescopes (IACTs)

©BabakTafreshi

- Background reduction and control in IACTs
- Possible strategy for super-preshower search by IACTs
- Mutli-messenger approach
- Summary

Introduction

Interesting energy range for Cherenkov telescopes

Basic principle: detection of high energies gamma-rays

Current IACTs locations

Field of view of 5 degrees/3.5 degrees Angular resolution 0.08 deg Energy range of 10 GeV to 10 TeV

The next generation Cherenkov telescopes observatory

Two sites (North and South) for a whole-sky coverage

Operated as on open Observatory

A factor of 10 more sensitive w.r.t. the current IACTs

CTA The Cherenkov Telescope Array

A few large telescopes to cover the range 20 - 200 GeV

~km² array of mediumsized telescopes for the 100 GeV to 10 TeV domain

~4km² array of smallsize telescopes, sensitive above a few TeV up to 300 TeV

70 SSTs [S]

4 LSTs [N & S]

15 MSTs [N] 25 MSTs [S] (+ 24 SCTs)

> Adapted from W. Hofmann Slide 5

The next generation Cherenkov telescopes observatory

Adapted from W. Hofmann Slide 6

- (one of) the most critical issue for analysis
- vital for significance calculation
- vital for flux determination
- > Two types of background:
 - Cosmic-rays hadrons
 - produce air shower somewhat similar to gamma-rays
 - about 10⁴ more hadrons tha gamma-rays

- Cosmic ray electrons

- shower very similar to gamma-rays
- flux suppressed at TeV energies

> Three stages of background reduction:

(I) suppresion at trigger level(II) reduction by image shape analysis(III) substraction by background modeling

Background Reduction

(I) Need for short exposures

... to reduce the night-sky background

(II) Reduction by image shape so-called gamma/hadron separation

... Cosmic Rays main background for Cherenkov astronomy

> Protons create hadronic showers with irregular images

> Electrons, positrons, gammas produce electro-magnetic shower, shower image is elongated ellipse

> Cuts on image parameters 99.9% background reduction

(III) Background modeling

> Remaining background is substracted based on statistical basis:

$$N_\gamma = N_{
m on} - lpha \, N_{
m off}$$

- ideally, control background is taken
- same position in camera
- same sky region
- with large event statistics
- same image-parameter phase space
- > not all criteria can be met at the same time
- > favoured background model depends on type of analysis (detection, morphology, spectrum...)

- Ring Background -

Off-Region: ring around On-Region Off-Events subtracted from On-Events

- proper area factor
- acceptance correction

(III) Background modeling

- > Off-Region: ring of circular regions around observation position (same distance as On-Region)
- > Observation position must be outside the On-Region
- > no acceptance correction needed assuming radially symmetric acceptance
- insensitive to systematics of acceptance determination
- > very well suited for spectra

- Reflected Region Background -

Significance calculation

> use the so-called theta² parameter – defined as squared distance between the true and the reconstructed source position.

Slide 12

Diffuse method - Basics

- → : background events on camera FOV
- → : signal events on camera FOV
- Direction information as strong discriminator between signal and background as seen for example, in the theta² plot

- > No direction information
- > No background measurement possible
- > We need Monte Carlo to model the background/signal
- > Different analysis method required

Method – Random forest

Random forest (multidimensional classification method):

- assigns value between 0 and 1 called hadronness
- classifies the hadron likeness of an event
- Image & shower parameter used for training
- trained on MC protons & electrons/photons from super pre-showers

HADRONNESS:

- 0 gamma-like event
- 1 hadron-like event

Random forest variables (example)

Monte Carlo simulations

For super-preshower searches the signal is hidden in the diffuse background ... we need MC for signal substraction

{MCp} - diffuse proton simulation instead of {OFF}: BACKGROUND {MCph} - diffuse super-preshower photon simulations*: SIGNAL

*Simulation of super-preshower could lead to non-standard images on camera: so RF will be train on 'strange'/non-standard images, at least in some cases.

> Simulation software:

- CORSIKA compiled with the PRESHOWER, VIEVCONE option
- IACT/CTAs software (K. Bernlohr, *sim_telarray*)

Proof of concept

- > The cosmic-ray electron spectrum measured by HESS (PRL101, (2008) 261104) and MAGIC (arXiv:1110.4008).
 - Background region: mostly only hadron-like events to be present.

 $\{ON_b^{data}\} = \alpha\{MC_{e_b}\} + \beta\{MC_{p_b}\}$

- Signal region: the fraction of expected CRe in the signal zone, extrap. from the {MCe} sample. $\{ON_s^{data}\} = \alpha \{MC_{e_s}\} + \beta \{MC_{p_s}\}$
- Solution of these two equations give normalization factors *α*, *β* i.e. contribution of the signal/background to measured data.

Analysis of shower images

> Hillas parameters depend on the distance between the shower maximum and the detector i.e. the position of shower maximum in the atmosphere.

Example of non-standard shower images

> A few PeV tau lepton decays to different channels and produce mixture of electromagnetic and hadronic sub-showers

for 1 PeV lepton tau, injected deep in the atmosphere (780 g/cm², zenith angle=88 deg)

Slide 19

Analysis of shower images

...Thus analysis of Hillas distributions, especially at large zenith angles, give possibility to identify new types of rare events (as an example neutrinos by CTAs arXiv:1606.01676)

For IACTs large zenith angles means larger threshold (up to 300 TeV), and less background from cosmic-rays and photons.

Multi-messenger approach

 Discovery of astrophysical neutrinos by IceCube boosted the multi-messenger approach.
 analysis of online data from different observatories: IceCube, Antares, HAWC, IACTs, Fermi, Swift and triggering follow-up observations by broadcasting alerts.

- > CREDO will be fit to this strategy very well, in case of interesting event
 - it could distribute alerts via AMON
 - or sent to IACTs, if IACTs will be part of the CREDO collaboration

Summary and Outlook

- > We shortly review detection technique of Cherenkov telescope, showing how they can be used for detection of super-preshowers
- Super-preshower approach to gamma ray data, in principle can use recently developed technique for diffuse searches in IACTs.
- > Can also, focus on analysis strange/non standard/border images, in order to identify new types of rare events (eg. super-preshowers class A can give different image than a single photon)
- Samma ray astronomers are also interested in CREDO strategy: (receiving alerts in case of interesting events seen by CREDO stations)

