The ALICE FoCal upgrade and ALICE 3

Ionut-Cristian Arsene (University of Oslo) on behalf of the ALICE Collaboration

Synergies between the EIC and the LHC, 22-24 Sept 2025, Krakow

ALICE upgrades timeline: ITS3 and FoCal

Run 3	LS3	Run 4	LS4	Run 5
	2026-2029	2030-2033	2034-2035	2036 -
Cylindrical Structural SI Half Barrels		• To	DRs approved in be installed dur oving towards pr	ring LS3

ITS3 TDR: CERN-LHCC-2024-003 FoCal TDR: CERN-LHCC-2024-004

ALICE upgrades timeline: ALICE3

Run 3	LS3	Run 4	LS4	Run 5	
	2026-2029	2030-2033	2034-2035	2036 -	

ALICE3 Loi: CERN-LHCC-2022-009

Scoping document: CERN-LHCC-2025-002

- Scoping document review completed in 2025
- Installation foreseen during LS4
- Ongoing R&D phase

The ALICE detector + FoCal

- 1 EMCAL | Electromagnetic Calorimeter
- 2 FIT | Fast Interaction Trigger
- 3 FoCal | Forward Calorimeter
- 4 HMPID | High Momentum Particle Identification Detector
- 5 ITS | Inner Tracking System
- 6 MCH | Muon Tracking Chambers
- MFT | Muon Forward Tracker
- 8 MID| Muon Identifier
- 9 PHOS/CPV| Photon Spectrometer
- 10 TOF | Time Of Flight
- 11 TPC | Time Projection Chamber
- TRDI Transition Radiation Detector
- 2DC| Zero Degree Calorimeter
- 14 Absorber
- 15 Dipole Magnet
- 16 L3 Magnet

Forward Calorimeter

- Electromagnetic: FoCal-E
- Hadronic: FoCal-H

- Positioned at 7m from IP2 on A-side
- Covering $3.4 < \eta < 5.8$

Physics program of FoCal

- Expand sensitivity to gluon distributions into previously unexplored regions at the LHC
- Explore non-linear evolution and nPDFs using multiple experimental observables
 - Prompt y
 - y hadron correlations
 - Photoproduction in UPCs
 - Jets
 - Hadroproduction of neutral mesons, quarkonia, Z⁰

(e+A DIS)

(Forward p+A)

Kopeliovich, Phys.Rev.C 59 (1999) 1609

- Complementarity with the EIC
 - Multiple processes in e-A and forward p-A are theoretically described using the same scattering amplitudes
 - Test universality of the description of gluon distributions in hadrons

FoCal design and challenges: FoCal-E

 Discriminate direct and decay photon showers (requires small Molière radius and high granularity readout)

FoCal-E

- High granularity Si-W calorimeter
- Longitudinal segmentation (20 layers)
 - 3.5mm W in each layer (1 *X*₀)
 - 18 pad layers (1x1 cm²)
 - Energy measurement
 - 2 pixel layers (30x30 μm²)
 - Two shower separation

FoCal design and challenges: FoCal-H

Design optimized for direct y measurements **Challenges**:

 Suppress bremsstrahlung and fragmentation γ (requires measurement of hadronic showers)

FoCal-H

- Spaghetti hadronic calorimeter (Cu + fibers)
 - Photon isolation, hadronic jet components
- Design A: capillary tubes
- Design B (since 2025): grooved plates

FoCal prototype

Small prototype built for performance tests

- FoCal-E
 - ~ 9 x 8 cm² transverse size
 - 18 pad layers
 - 2 pixel layers
- FoCal-H
 - 9 Cu-scintillator towers
 - ~ 20 x 20 cm² transverse size

FoCal prototype tested in several electron/hadron beams at PS and SPS Performance in test beams M.Aehle et al., arXiv: 2311.07413

Energy resolution in beam tests

Shower energy resolution

- FoCal-E: below 3% at high energy
- FoCal-H: below 15% at high energy

FoCal performance: arXiv: 2311.07413

Constraining PDFs with isolated photons

- Advantage: no final state fragmentation
- Reconstructed using rej. of decay photons and isolation cuts
 - Still untapped potential using more sophisticated methods
- Similar, but independent, constraints to nuclear PDFs as LHCb data using D^os

Jets

• Jet energy scale (JES) and jet energy resolution (JER) quantified using Pythia + GEANT for R=0.6 anti- k_{T} jets

Two-particle correlations in pp and p-Pb

- jet-jet and γ-jet, sensitive to saturation effects at small-x
- Long-range correlations (FoCal barrel) possible

Photoproduction in UPC (p-A and A-A)

- Extending coverage in W_{yp} up to 2 TeV
- Large lever arm for discriminating linear vs saturation scenarios

ALICE 3

- Compact and ultra-light silicon tracker
- Retractable vertex detector with very high pointing resolution
- Extensive particle identification
- Large acceptance: $|\eta|$ <4, p_{T} >0.02 GeV/c
- Superconducting magnet system, B=2T
- Continuous readout and online processing
- Possibility of including FoCal being explored

ALICE 3 performance

Unprecedented pointing resolution: 3-4 µm

Maintain PID performance in a wide kinematic range

Tracking

- Wafer-size, ultra-thin, bent CMOS MAPS sensors
- Retractable vertex detector (IRIS): 3 barrel + 3x2 disk layers within the beam pipe
- Middle layers: 4 barrel at R<20cm, 3x2 disks

Outer tracker

- MAPS detector with an area of 60 m²
- 4 barrel layers at R > 20 cm, 6x2 disk layers

Particle identification systems

Barrel Time-of-Flight (TOF)

- 2 barrel + 2 disk layers
- Technology options
 - Monolithic CMOS LGADs
 - Hybrid LGADs
 - SiPMs

Ring Imaging Cherenkov (RICH)

- One barrel bRICH: aerogel + SiPMs
- 2 forward fRICH: aerogel + HRPPDs

Muon ID

- Standard magnetic steel absorber + two MID layers
- Technology options
 - Plastic scintillators
 - Multiwire proportional chambers
 - Resistive plate chambers (RPCs)

ALICE 3 physics goals

Early stages: temperature, chiral symmetry restoration

- Dilepton and photon production
 Heavy flavour diffusion and thermalization in QGP
- Precise beauty flow at low p_T , $D\overline{D}$ correlations Hadronization in heavy-ion collisions
- Multi-charm production
- Excited quarkonium states: dissociation and regeneration

Fluctuations of conserved charges

- Hadron correlations and fluctuations
 Nature of exotic hadrons
- DD femtoscopy, production yields Beyond QGP physics
- Ultra-soft photon production (Low's theorem)
- Search for ALPs in ultra-peripheral Pb-Pb
- Search for super-nuclei (c-deuterium, c-tritium)

Dilepton measurements

- Very good electron ID down to low p_T
- Small material budget
- Good pointing resolution (HF decays)

Early QGP temperature

- Mass above 1 GeV/c²
- Differential studies: probe of time dependence

Chiral symmetry

Lattice QCD indicates strong broadening of vector mesons

Heavy quark transport

Angular decorrelation of heavy-flavour hadrons

 Direct measurement of momentum broadening in QGP via DD correlations

Differential production measurements (flow and R_{AA})

- Heavy-quark transport properties in QGP
- Probe degree of beauty thermalization

Exotic bound states

High mass charm-nuclei

- Sensitivity to c-deuterium and c-tritium
- Search for anti-(hyper)nuclei with A>5
 Search for DD bound states using femtoscopy
- Unique tests of long range strong interactions
- Nature of exotic states

Summary and conclusions

FoCal

- Explore an unprecedented region in low-x physics, probing gluon evolution in the saturation regime
- Unique measurements of prompt photons, vector mesons and jets
- Very good performance confirmed by test beams
- Currently moving towards construction phase

ALICE 3 is a unique experiment

- Outstanding detector capabilities
- Main scientific goal is to expand knowledge of the microscopic dynamics of QGP beyond current limits
- Innovative design based on silicon technologies with broader impact for future high-energy and nuclear physics experiments
- ALICE3 is a very prominent project in the NuPECC long range plan and input to the European Strategy for Particle Physics