

ALICE results on ultraperipheral collisions

Adam Matyja

On behalf of the ALICE Collaboration

Institute of Nuclear Physics
Polish Academy of Sciences, Kraków

Joint ECFA-NuPECC-APPEC Workshop Synergies between the EIC and the LHC

Kraków, Poland 22 – 24 September 2025

Outline

- Introduction
- Experimental apparatus
- Measurements in Run 3
 - π, K, p spectra in UPC at $\sqrt{s_{NN}}$ = 5.36 TeV
 - Strangeness production in UPC at $\sqrt{s_{NN}}$ = 5.36 TeV
 - Charm production in UPC at $\sqrt{s_{NN}}$ = 5.36 TeV
 - Exclusive τ pair production in UPC at $\sqrt{s_{NN}}$ = 5.36 TeV
- Summary

Ultra-peripheral collisions (UPC)

- Impact parameter $b > R_1 + R_2$
 - Hadronic interactions suppressed
- Photon induced reactions:
 - Well described in Weizsäcker-Williams approximation
 - Photon flux $\sim Z^2 (Z_{Pb} = 82)$
 - Maximum photon energy at Run 3:
 - $E_{\gamma}^{\text{max}} \approx \gamma \hbar c / R \approx 80 \text{ GeV}$
 - Photon virtuality at LHC
 - $Q^2 \approx (\hbar c/R_{\text{nucleus}})^2 \approx (30 \text{ MeV})^2$
 - Photo-nuclear c.m. energy, $W_{\gamma N}^{2}$ = $2E_{N} M_{VM} e^{\mp y}$
 - $40 \lesssim W_{\rm vN} \lesssim 900 \, {\rm GeV}$
 - Large γ -induced interaction cross section
- Clear signature:
 - Low detector activity
 - Rapidity gap(s)

Classes of processes

Exclusive processes (no colour exchange)

Inclusive processes (with colour exchange)

Photon itself takes part in the hard scattering

Direct production

Resolved production

- Virtual excitation of the photon
- Participants of the hard scattering:
 - qq-bar pair
 - multiple gluons

Motivation

- Studies of gluon structure
- Different proton → nucleon PDF
 - Gluon shadowing (destructive interference at low x_B caused by coherent multiple scattering)
 - Gluon saturation (equilibrium between gluon splitting and recombination)
 - Saturation scale enhanced for nuclei by factor $A^{1/3}$: $(Q_s^A)^2 \approx cQ_0^2 [A/x]^{1/3}$
- **Heavy flavour** → probe **nuclear PDF** in large phase space down to $x_B \sim 10^{-4}$
- Collectivity in small systems in UPC
- Disentangle initial state effects from QGP-driven behavior

Gluon splitting manner

Recombination

 Central Barrel tracking (e[±], μ[±], h[±])

- $|\eta| < 0.9, 0 < \varphi < 2\pi$
- ITS silicon detector
- TPC gas drift detector
- TOF resistive plate chambers
- PID: TPC, TOF

Forward tracking (μ[±])

- $-4 < \eta < -2.5$
- Absorber
- Muon tracker (8)
- Muon trigger (10)
- Muon Forward Tracker (9)
- Dipole magnet

Diffractive detectors

- FT0 scintillator counter
- FV0 scintillator counter
- ZDC sampling calorimeter

Vertex

- ITS

Event selection

- Continous (trigger-less) readout
- Rapidity gap on one side only
 - Single Gap C side: (FTOA OR FVOA OR ZNA) AND (!FTOC AND !ZNC)
 - Single Gap A side: (FTOC OR ZNC) AND (!FTOA AND !FVOA AND !ZNA)

ALICE detectors' performance in Run 3

- Clear separation between neutron classes in ZDC:
 - OnOn, XnOn, OnXn, XnXn
- Asymmetric rapidity distribution due to gap requirement on one side
 - → better detector and continuous readout
- FT0 threshold tuned to 1 or 2 e[±] production

ALICE detectors' performance in Run 3

I-PERF-529714 ALI-PERF-577978

- Excellent tracking capabilities
- Information in TPC and TOF in complementary particles momenta
- Down to p = 100 MeV/c
- Various particle species from electrons to tritium

Inclusive particle production

TCM: A.Bylinkin and A. Rostovtsev,

Phys.Atom.Nucl. 75 (2012) 999-1005, Yad.Fiz. 75 (2012) 1060

A. Bylinkin and A. Rostovtsev,

- Fully corrected yields of π , K, p in inclusive photonuclear reactions
- Rapidity gap on the photon side
- Spectra compared to STARLight (photon flux) + DPMJET (nuclear breakup)
 - Good descriptions of π
 - Strangeness underpredicted
 - Baryons overpredicted
- Spectra well parametrised by Two Component Model (TCM)
 - Integrated yields and $\langle p_T \rangle$ extracted
 - $\langle p_T \rangle$ agrees with trend of pp and Pb-Pb

Particle production ratios

- Ratios up to $p_T = 2 \text{ GeV}/c$
- MC failed to describe ratios
 - Like (expected) in pp collisions
- Compared to other systems
 - K/π: γ-Pb shape similar to p-Pb and Pb-Pb
 - K/π : γ-Pb lower than other systems
 - p/π : γ-Pb shape similar to smaller systems (p-Pb or pp)

Strange particle reconstruction

Multi starange hadron reconstruction topologies

- V⁰ weak decay of neutral particle into pair of charged descendants (V-shape decay)
 - $K_S^0 \rightarrow \pi^+ \pi^- [d s]$
 - $-\Lambda(\Lambda) \rightarrow p \pi^{-}(p \pi^{+}) [uds]$
- Cascade weak decay of charged particle in to V⁰ and charge particle
 - $-\Xi^{-}(\Xi^{+}) \rightarrow \Lambda \pi^{-}(\overline{\Lambda}\pi^{+})$ [dss]
 - $-\Omega^{-}(\Omega^{+}) \rightarrow \Lambda K^{-}(\Lambda K^{+})$ [sss]

Signal extraction

- Invariant mass of K^0_S , Λ and Ξ in p_T intervals
- Two Gaussians (signal) + polynomial (background)
- Signal integrated within 5 σ
- Acceptance and reconstruction efficiency corrected
- Feeddown for Λ not taken into account

ALI-PERF-600692

ALI-PERF-607584

Strangeness and collectivity

ALTCE

- K⁰_S mesons and Λ baryons spectra measured in inclusive photonuclear reactions
- Baryon/meson enhancement at the intermediate p_{T}
- Similar shape to ratio in low multiplicity p-Pb collisions
- γ-Pb and p-Pb spectra are closer when moving from minimum bias (MB) to higher multiplicity class (HM)
- Studies of collective expansion in UPC
 - γ -Pb collisions are ruled mainly by Vector Meson Dominance model
 - → effectively hadron-Pb collisions

Event class	Multiplicity	
HM	$8 \le N_{\rm ch}^{\rm rec} < 41$	
MB	$0 \le N_{\rm ch}^{\rm rec} < 41$	

Inclusive open charm photoproduction

First measurement of open heavy flavour in UPC in **ALICE**

$$-D^0 \rightarrow K^-\pi^+$$

$$-D^+ \rightarrow K^-\pi^+\pi^+$$

$$-D^{*+} \rightarrow D^0 \pi^+$$

$$-\Lambda_c^+ \rightarrow p K^- \pi^+$$

ALI-PREL-598590

Inclusive open charm photoproduction

- p_T spectrum of D⁰ meson down to $p_T = 0$
 - \rightarrow allow for mean p_{T} extraction
 - CGC model (GELM) reproduces the shape above \sim 1 GeV/c
 - Agreement between CMS and ALICE
 - Data $\langle p_T \rangle = 1.476 \pm 0.026$ (stat) ± 0.048 (syst) GeV/c
- Mean p_{T} not described by models
- Comparison for mean p_T in a range 0.2 to 12 GeV/c
 - Data $\langle p_{\rm T} \rangle = 1.593 \pm 0.056 \, \text{GeV}/c$
 - GELM $< p_T > = 1.403 \text{ GeV/}c$
 - GBW $< p_T > = 1.821 \text{ GeV}/c$
 - $\text{ rcBK } < p_{T} > = 1.931 \text{ GeV}/c$

GELM: arXiv: 2503.16108 (2025). GSS: Nucl. Phys. A976 (2018) 33. CMS: CMS-PAS-HIN-24-003 (2024).

Exclusive τ pair production

- τ pair photoproduction in Pb-Pb UPC \rightarrow Cross section scales with Z^4
- τ leptons decays quickly and can not be observed directly
 - Difficult due to at least 1 ν in each τ decay
- Sensitive to anomalous magnetic moment: $a_{\ell} = (g-2)_{\ell}/2$
 - $-a_{\tau}^{\text{exp}} = 0.0009^{+0.0032}_{-0.0031}$ (CMS-PAS-SMP-23-005 (2024))
 - $-a_{\tau}^{SM} = 0.00117721(5)$ (Mod. Phys. Lett. A 22, 159 (2007))
- lacktriangle Cross section and au kinematics sensitive to $a_ au$
 - L. Beresford and J. Liu, PRD 102 (2020) 113008
 - M. Dyndał et al., PLB 809 (2020) 135682
 - Burmasov et al., arXiv:2203.00990 (2022)

τ decay topologies:

- 1 prong + 1 prong (e+e, e+ μ/π)
- 1 prong + 3 prong (e+3 π , μ/π +3 π)

Summary

- New inclusive results in UPC at $\sqrt{s_{NN}}$ = 5.36 TeV
 - First π , K, p spectra
 - Strangeness production spectra
 - Charm production spectra
 - ⇒ Fully corrected cross sections are on the way
- First exclusive τ pair production in ALICE
- Hints of collectivity in γ -Pb collisions
- The baryon anomaly is now observed in γ-Pb collisions
- Novel probes for studies of cold nuclear matter

Backup

ALICE measurements in UPC

Run 1

- Cross section for electromagnetic dissociation with neutron emission in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV **PRL 109** (2012) 252302.
- Inelastic, single- and double-diffraction cross sections in pp EPJC 73 (2013) 2456.
- Coherent J/ψ photoproduction in Pb-Pb at Vs_{NN} = 2.76 TeV **PLB 718 (2013) 1273-1283**.
- J/ ψ and e⁺e⁻ pair photoproduction at mid-rapidity in Pb-Pb at Vs_{NN} = 2.76 TeV **EPJC 73 (2013) 2617**.
- Coherent $ρ^0$ photoproduction in Pb-Pb at $vs_{NN} = 2.76$ TeV **JHEP 09 (2015) 095**.
- Coherent ψ (2S) photoproduction in Pb-Pb at vs_{NN} = 2.76 TeV **PLB 751 (2015) 358-370**.

Run 2

- J/ψ photoproduction in p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV **PRL 113 (2014) 232504**.
- Energy dependence of exclusive J/ ψ photoproduction in p-Pb at Vs_{NN} = 5.02 TeV **EPJC (2019) 79: 402**.
- Coherent ρ^0 photoproduction in Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV- **JHEP 06 (2020) 035**.
- Coherent J/ ψ photoproduction at forward rapidity in Pb-Pb at Vs_{NN} = 5.02 TeV **PLB 798 (2019) 134926**.
- Coherent $ρ^0$ photoproduction in Xe-Xe at $Vs_{NN} = 5.44$ TeV PLB 820 (2021) 136481.
- Coherent J/ψ and ψ' photoproduction at midrapidity in Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV **EPJC 81 (2021) 712**.
- |t|-dependent coherent J/ψ in Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV **PLB 817 (2021) 136280**.
- Neutron emission in Pb-Pb at $\sqrt{s_{NN}} = 5.02 \text{ TeV} \text{PRC 107 (2023) 064902}.$
- Polarisation of coherently photoproduced J/ ψ in Pb–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV **PLB 865 (2025) 139466**.
- Exclusive and dissociative J/ ψ photoproduction, and exclusive dimuon production, in p–Pb at vs_{NN} = 8.16 TeV **PRD 108**, **112004 (2023)**.
- |t|-dependence of incoherent J/ψ in Pb-Pb at Vs_{NN} = 5.02 TeV **PRL 132, 162302 (2024).**
- Energy dependence of coherent photoproduction of J/ψ in Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV **JHEP 10 (2023) 119**.
- Photoproduction of K⁺K⁻ pairs in Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV **PRL 132 (2024) 222303**.
- 4π photoproduction in Pb-Pb at Vs_{NN} = 5.02 TeV **arXiv:2404.07542**.
- Azimuthal anisotropy in coherent ρ^0 photoproduction in Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV PLB 858 (2024) 139017.
- Proton emission in ultraperipheral Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV **PRC 111 (2025) 054906**.
- Evidence for J/ψ suppression in incoherent photonuclear production in Pb-Pb at $Vs_{NN} = 5.02$ TeV **arXiv:2503.18708**.

Impact parameter dependence

No breakup (0n0n)

- Excitation of the nuclei possible through the secondary photon exchange
- ⇒ Giant dipole resonance

All protons vibrating against all neutrons → Knocks out neutrons

Single breakup (XnOn + OnXn)

UPC event clasifier: 0n0n, 0nXn, XnXn \rightarrow via electromagnetic dissociation (EMD)

Motivation for t-dependent measurements

- Gluon density is impact parameter b dependent at given Bjorken-x and Q²
- b and p_T are Fourier conjugates
- $p_T^2 \approx |t|$ dependence of the cross section helps to constrain **transverse gluonic structure** at low x_B
- In Good Walker approach
 - Coherent photoproduction tells about transverse dependence of the gluon shadowing
 - Saturation may contribute to nuclear shadowing
 - Incoherent photoproduction is sensitive to the variance of the spatial gluon distribution (subnucleonic fluctuations)

$$\frac{d\sigma^{inc}}{dt} = \frac{R_g^2}{16\pi} (\langle |A(x,Q^2,\vec{\Delta})|^2 \rangle - |\langle A(x,Q^2,\vec{\Delta}) \rangle|^2)$$
Total Coherent

Neutron emission in UPC

ZN	$\sigma(i$ n)	$\sigma^{\text{RELDIS}}(i\text{n})$	$\sigma^{ m n_O^On}(i{ m n})$
	(b)	(b)	(b)
1n	$108.4 \pm 0.1 \pm 3.7$	108.0 ± 5.4	103.7 ± 2.1
2n	$25.0 \pm 0.1 \pm 1.3$	25.9 ± 1.3	23.6 ± 0.5
3n	$7.95 \pm 0.04 \pm 0.23$	11.4 ± 0.6	6.3 ± 0.1
4n	$5.65 \pm 0.03 \pm 0.33$	7.8 ± 0.4	4.8 ± 0.1
5n	$4.54 \pm 0.03 \pm 0.44$	6.3 ± 0.3	4.7 ± 0.1
1n-5n	$151.5 \pm 0.2 \pm 4.6$	159.8 ± 5.6	143.1 ± 2.2

ALICE: PRC 107 (2023) 064902

- It is huge!
- Up to 5 neutrons
- Hadronic cross section $\sigma_{had} = 7.67 \pm 0.24 \text{ b}$
- Good description of 1n and 2n emission, but other classes are not so well described

RELDIS: Phys. Part. Nucl. 42 (2011) 215.

NOON: Comput. Phys. Commun. 253 (2020) 107181.

Proton emission in EMD of ²⁰⁸Pb

- Absorption of photons $(E_{\gamma} > 140 \text{ MeV})$
 - → emission of several neutrons and protons
- Proton emission accompanied by at least 1 neutron emission
 - → production of Thallium, Mercure, GOLD (media release)
 - → Op and 3p agree with RELDIS predictions, but 1p and 2p underestimated by 17-25%
- Single proton emission accompanied by 1, 2, 3 neutrons
 - → production of the isotopes ^{206,205,204}TI
 - → RELDIS overestimates the data 2-3x
 - \rightarrow Better description for E_{γ} > 20 MeV, but opposite trend
- Confirms very good ZDC performance
- Possibility to measure 1n or 2n classes:
 - → access to different impact parameters
- ZDC is used to measure centrality
- Relevant constraints on models for TI

Photoproduction and main variables

- Momentum scale $Q^2 \sim M_{VM}^2 / 4$
 - Hard scale assured by high mass of J/ψ , ψ' meson
 - Semi-hard scale for ρ^0 meson
- Vector Meson (VM) quantum numbers:

$$- J^{PC} = 1^{--}$$

 Bjorken-x: fraction of longitudinal momentum of proton

$$x_B = \frac{M_{VM}}{\sqrt{S_{NN}}} e^{\pm y}$$

Photon-target centre-of-mass energy

$$W_{v^*Pb,p}^2 = 2E_{Pb,p}M_{VM}e^{\mp y}$$

• 4-momentum transfer $|t| \sim p_T^2$

Incoherent VM photoproduction:

- Photon couples to a single nucleon
- $< p_T^{VM} > \sim 1/R_p \sim 400 \text{ MeV/}c$
- Target ion breaks, nucleon stays intact
- Usually accompanied by neutron emission

Coherent VM photoproduction:

 Photon couples coherently to all nucleons (whole nucleus)

 $< \rho_T^{VM} > \sim 1/R_{Pb} \sim 50 \text{ MeV/}c$

Target ion stays intact

ALICE: JINST 19 P05062 (2024)

ALICE in Run 3

- Large upgrade during LS2
 - Inner Tracking System full pixel layers
 - Time Projection Chamber GEM readout
 - New Muon Forward Tracker
 - New Fast Interaction Trigger (FV0 + FT0 + FDD)
 - New Event Processing Nodes Farm
 - Upgraded readout for most of detectors
 - ⇒ continuous readout at high rate
- Pb-Pb data taking at 50 kHz
 - All data stored on tape

ALICE upgrade detectors:

- > ITS: NIM 1032, 166632 (2022)
- > TPC: JINST 16, P03022 (2021)
- > FIT: NIM 1039, 167021 (2022)
- ➤ O²: CERN-LHCC-2015-006, ALICE-TDR-019

Forward Calorimeter (FoCal)

- Upgrade to ALICE detector
- LOI: CERN-LHCC-2020-009
- During LS3 (2026-2029) FoCal should be installed
- $3.2 < \eta < 5.8 \rightarrow x_B \sim 10^{-6}$
- 700 cm away from IP
- FoCal-E (22 modules)
- FoCal-H (~10000 channels)

- Forward physics (large η) at low Bjorken- $x \in \mathbb{R}^{10^2}$
 - Explore gluon dynamics and non-linear QCD evolution in pp, p-Pb and Pb-Pb
 - Isolated photons, neutral mesons, and jet production and correlations in hadronic collisions
 - Vector meson photoproduction in UPC
 - QGP probes in Pb–Pb collisions at large η
 - based on jet quenching phenomena and longrange correlations of neutral pions, jets, and photons

