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|QCD evolution, dilute vs. dense, forward jets|
art by Piotr Kotko

A dilute system carries a few
high-x partons contributing to the
hard scattering.

A dense system carries many
low-x partons.

At high density, gluons are imag-
ined to undergo recombination,
and to saturate.

This is modeled with non-linear
evolution equations, involving
explicit non-vanishing kT .

x
x
x
x
x
x
x

Saturation implies the turnover of the gluon density, stopping
it from growing indefinitely for small x.

Forward jets have large rapidities, and trigger events in which
partons from the nucleus have small x.
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|Color Glass Condensate (CGC)| McLerran, Venugopalan
1994

introduction from
Morreale, Salazar 2021The CGC is an effective field theory for high energy QCD.

Partons carrying large hadron momentum fraction x are treated as static color sources ρ.

Their color charge distribution is non-perturbative and is dictated by a gauge invariant
weight functional Wx0 [ρ]. The sources generate a current Jµ,a.

The partons carrying small x are treated as a dynamical classical field Aµ,a.

Sources and fields are related by the Yang-Mills equations [Dµ, Fµν] = Jν.

The expectation value ⟨O⟩x0 of an observable O is calculated as the path integral O[ρ] in
the presence of sources from Wx0[ρ], averaged over all possible configurations ρ.

The interaction of a highly energetic color charged particle with the classical field A in the
eikonal approximation is encoded in the light-like Wilson lines

U(xT) = Pexp

{
ig

∫∞
−∞ dx+A−,a(x+, xT)t

a

}

Evolution in x of Wx[ρ] implies an infinite hierarchy (known as the B-JIMWLK hierarchy)
of non-linear coupled equations dictating the evolution of n-point Wilson line correlators.

Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner
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The interaction of a highly energetic color charged particle with the classical field A in the
eikonal approximation is encoded in the light-like Wilson lines

U(xT) = Pexp

{
ig

∫∞
−∞ dx+A−,a(x+, xT)t

a

}

Evolution in x of Wx[ρ] implies an infinite hierarchy (known as the B-JIMWLK hierarchy)
of non-linear coupled equations dictating the evolution of n-point Wilson line correlators.

Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner

Cross section calculations involve particle wave functions and Wilson line correlators.
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|ITMD Factorization| For forward dijet production
in dilute-dense hadronic collisions

Improved TMD factorization (Kotko, Kutak, Marquet, Petreska, Sapeta, AvH 2015)

dσAB→X =

∫
dk2

T

∫
dxA

∑
i

∫
dxB

∑
b

ϕ
(i)
gb(xA, kT , µ) fb/B(xB, µ)dσ̂

(i)
gb→X(xA, xB, kT , µ)

target-side TMD projectile-side PDF parton-level matrix element
�
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|ITMD Factorization| For forward dijet production
in dilute-dense hadronic collisions

Generalized TMD factorization (Dominguez, Marquet, Xiao, Yuan 2011)

dσAB→X =

∫
dk2

T

∫
dxA

∑
i

∫
dxB

∑
b

ϕ
(i)
gb(xA, kT , µ) fb/B(xB, µ)dσ̂

(i)
gb→X(xA, xB, µ)

For xA ≪ 1 and PT ≫ kT ∼ Qs (jets almost back-to-back).

TMD gluon distributions ϕ
(i)
gb(xA, kT , µ) satisfy non-linear evolution equations.

Partonic cross section dσ̂
(i)
gb is on-shell, but depends on color-structure i.

Improved TMD factorization (Kotko, Kutak, Marquet, Petreska, Sapeta, AvH 2015)

dσAB→X =

∫
dk2

T

∫
dxA

∑
i

∫
dxB

∑
b

ϕ
(i)
gb(xA, kT , µ) fb/B(xB, µ)dσ̂

(i)
gb→X(xA, xB, kT , µ)

Originally a model interpolating between High Energy Factorization and Generalized TMD
factorization: PT ≳ kT ≳ Qs.

Partonic cross section dσ̂
(i)
gb is off-shell and depends on color-structure i.

ITMD formalism is obtained from the CGC formalism, by including so-called kinematic
twist corrections (Antinoluk, Boussarie, Kotko 2019).

9996



|Definition of gluon TMDs|

Resummation of gluon exchanges leads to Wilson line Uγ = Pexp

{
− ig

∫
γ

dz·A(z)

}
acting as a gauge link for the gauge invariant definition of a TMD

Fg/A(x, kT) = 2

∫
d4ξ δ(ξ+)

(2π)3 p+
A

exp
{
ixp+

Aξ
− − i⃗kT · ξ⃗T

} 〈
A
∣∣Tr{F̂i+(ξ)Uγ(ξ,0)F̂

i+(0)
}∣∣A〉
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|TMD-valued color matrix|
Schematic hybrid (non-ITMD) factorization formula

dσ =
∑

y=g,u,d,...

∫
dx1d

2kT

∫
dx2 dΦg∗y→n

1

fluxgy
Fg(x1, |kT |) fy(x2, µ)

∑
color

∣∣∣M(color)
g∗y→n

∣∣∣2
To get the ITMD formula: replace TMD times color matrix in

Fg(x1, |kT |)
∑
color

∣∣∣M(color)
∣∣∣2 = Fg(x1, |kT |)

∑
σ∈Sn+2

∑
τ∈Sn+2

A∗
σ Cστ Aτ , Cστ = Nλ(σ,τ)

c

with “TMD-valued color matrix” as

(N2
c − 1)

∑
σ∈Sn+2

∑
τ∈Sn+2

A∗
σ C̃στ(x, |kT |)Aτ , C̃στ(x, |kT |) = Nλ̄(σ,τ)

c F̃στ(x, |kT |)

where each function F̃στ is one of 10 functions

F(1)
qg , F(2)

qg , F(3)
qg

F(1)
gg , F(2)

gg , F(3)
gg , F(4)

gg , F(5)
gg , F(6)

gg , F(7)
gg
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|List of TMDs|

F
(1)
qg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[+]

]〉
,
〈
· · ·
〉
= 2

∫
d4ξ δ(ξ+)

(2π)3P+
eik·ξ

〈
P
∣∣∣ · · · ∣∣∣P〉

F
(2)
qg (x, kT ) =

〈
Tr
[
U[□]

]
Nc

Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[+]

]〉
F
(3)
qg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[□]U[+]

]〉
F
(1)
gg (x, kT ) =

〈
Tr
[
U[□]†]
Nc

Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[+]

]〉

F
(2)
gg (x, kT ) =

1

Nc

〈
Tr
[
F̂i+ (ξ)U[□]†

]
Tr
[
F̂i+ (0)U[□]

]〉
F
(3)
gg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[+]

]〉
F
(4)
gg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[−]

]〉
F
(5)
gg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[□]†U[+]†F̂i+ (0)U[□]U[+]

]〉
F
(6)
gg (x, kT ) =

〈
Tr
[
U[□]

]
Nc

Tr
[
U[□]†]
Nc

Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[+]

]〉

F
(7)
gg (x, kT ) =

〈
Tr
[
U[□]

]
Nc

Tr
[
F̂i+ (ξ)U[□]†U[+]†F̂i+ (0)U[+]

]〉
9999



|TMDs relevant for dijets|

Start with dipole distribution F
(1)
qg (x, kT) =

〈
Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[+]

]〉
evolved via the

BK equation formulated in momentum space supplemented with subleading corrections
and fitted to F2 data (Kutak, Sapeta 2012)

All other distribution appearing in dijet production, F
(2)
qg ,F

(1)
gg ,F

(2)
gg ,F

(6)
gg , in the mean-field

approximation (AvH, Marquet, Kotko, Kutak, Sapeta, Petreska 2016).

This is, at leading order in 1/Nc. In this approximation, the same distributions suffice for
trijets.

For DIS one only needs F
(3)
gg

F(3)
gg (x, kT) =

παs

Nck
2
TS⊥

∫
k2T

dr2T ln
r2T
k2
T

∫
d2qT

q2
T

F(1)
qg (x, qT)F

(1)
qg (x, rT − qT)

where S⊥ is the target’s transverse area.
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|ITMDs| Bury, AvH, Kotko, Kutak 2020

Dependence of F
(1)
qg on kT below 1GeV approximated by power-like fall-off. For higher

values of |kT | it is a solution to the BK equation.

TMDs decrease as 1/|kT | for increasing |kT |, except F
(2)
gg , which decreases faster (even

becomes negative, absolute value shown here).
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|Sudakov resummation for dijets|

S. Sapeta

Having hard jets in the final state, large
logarithms associated with the hard
scale have to be resummed. This re-
summation can be accounted for by in-
clusion of the Sudakov factor.

Within the small-x saturation formalism, Sudakov effects are most conveniently included
in b-space, via an “initial-state luminosity” (Mueller, Xiao, Yuan 2013)

L
ag→cd
g∗/B (xp, x, kT , µ) =

∫
dbT bT J0(bTkT) e

−S
ag→cd
Sud (µ,bT )

×fa/p(xp, µb)

∫
dk ′

T k
′
T J0(bTk

′
T)Fg∗/B(x, k

′
T)

with µb = 2e−γE/b∗ , b∗ = bT/

√
1+ b2

T/b
2
max. The scale choice µb eliminates threshold

logarithms, but “breaks” factorization between initial-state variables, which complicates
the Monte Carlo approach, or requires expensive 4-dim luminosity grids.
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|Sudakov resummation for dijets|

The Sudakov receives perturbative and non-perturbative contributions for each cannel

Sab→cd
Sud (µ, bT) =

∑
i=a,b,c,d

Si
p(µ, bT) +

∑
i=a,c,d

Si
np(µ, bT)

Perturbative part (Mueller, Xiao, Yuan 2013)

Si
p(Q,bT) =

αs

2π

∫Q2

µ2
b

dµ2

µ2

[
Ai ln

Q2

µ2
− Bi

]
{A,B}qg→qg =

{
2(CA + CF) , 3CF + 2CAβ0

}
, {A,B}gg→gg =

{
4CA , 6CAβ0

}
bmax = 0.5GeV−1

Non-perturbative contribution for small-x gluon already in TMD and should be omitted in
our application (Staśto, Wei, Xiao, Yuan 2018).
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|Parton-level cross sections|

Hadron-scattering process Y with partonic processes y contributing to multi-jet final state

dσY(p1, p2; k3, . . . , k2+n) =
∑
y∈Y

∫
d4k1 Py1

(k1)

∫
d4k2 Py2

(k2)dσ̂y(k1, k2; k3, . . . , k2+n)

Collinear factorization:

Pyi
(ki) =

∫
dxi

xi
fyi

(xi, µ) δ
4(ki − xipi)

kT -dependent factorization factorization:

Pyi
(ki) =

∫
d2kiT
π

∫
dxi

xi
Fyi

(xi, |kiT |, µ) δ
4(ki − xipi − kiT)

Differential partonic cross section:

dσ̂y(k1, k2; k3, . . . , k2+n) = dΦY(k1, k2; k3, . . . , k2+n)ΘY(k3, . . . , k2+n)

× flux(k1, k2)× Sy |My(k1, . . . , k2+n)|
2

Parton-level phase space:

dΦY(k1, k2; k3, . . . , k2+n) =

(
n+2∏
i=3

d4kiδ+(k
2
i −m2

i )

)
δ4(k1 + k2 − k3 − · · ·− kn+2)

p2

p1

k2

k1

k3

k4

kn+2
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|Parton-level cross sections|

eh-scattering process Y with partonic processes y contributing to multi-jet final state

dσY(p1, p2; k3, . . . , k3+n) =
∑
y∈Y

∫
d4k1 Py1

(k1) dσ̂y(k1, k2; k3, . . . , k3+n)

Collinear factorization:

Pyi
(ki) =

∫
dxi

xi
fyi

(xi, µ) δ
4(ki − xipi)

kT -dependent factorization factorization:

Pyi
(ki) =

∫
d2kiT
π

∫
dxi

xi
Fyi

(xi, |kiT |, µ) δ
4(ki − xipi − kiT)

Differential partonic cross section:

dσ̂y(k1, k2; k3, . . . , k3+n) = dΦY(k1, k2; k3, . . . , k3+n)ΘY(k3, . . . , k3+n)

× flux(k1, k2)× Sy |My(k1, . . . , k3+n)|
2

Parton-level phase space:

dΦY(k1, k2; k3, . . . , k3+n) =

(
n+3∏
i=3

d4kiδ+(k
2
i −m2

i )

)
δ4(k1 + k2 − k3 − · · ·− kn+3)

p2 = k2

p1

q

k1

k3

k4

kn+2

kn+3
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|KATIE| https://bitbucket.org/hameren/katie

• parton-level tree-level event generator, like Alpgen, Helac, MadGraph, etc.

• arbitrary hadron-hadron or hadron-lepton processes within the standard model (includ-
ing effective Higgs-gluon coupling) with several final-state particles.

• 0, 1, or 2 space-like initial states.

• produces (partially un)weighted event files, for example in the LHEF format.

• requires LHAPDF. TMD PDFs can be provided as files containing rectangular grids,
or with TMDlib (Hautmann, Jung, Krämer, Mulders, Nocera, Rogers, Signori 2014).

• a calculation is steered by a single input file.

• employs an optimization stage in which the pre-samplers for all channels are optimized.

• during the generation stage several event files can be created in parallel.

• event files can be processed further by parton-shower program like CASCADE.

• (evaluation of) matrix elements separately available.

• ITMD available.
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|Dijets in DIS| AvH, Kotko, Kutak, Sapeta 2021

dσeh→e ′+2j+X

=

∫
dx

x

d2kT

π
F(3)
gg (x, kT , µ)

× 1

4xPe ·Ph

dΦ(Pe, k;pe, p1, p2) |Meg∗→e ′+2j|
2

ITMD for DIS only requires F
(3)
gg ,

aka the Weizsäcker-Williams density
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|Dijets in DIS| AvH, Kotko, Kutak, Sapeta 2021

dσeh→e ′+2j+X

=

∫
dx

x

d2kT

π
F(3)
gg (x, kT , µ)

× 1

4xPe ·Ph

dΦ(Pe, k;pe, p1, p2) |Meg∗→e ′+2j|
2

jet1

jet2

e−

∆ϕ

hadron

transverse plane
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|Dijet azimuthal correlations|
in p-p and p-Pb collisions at forward LHC calorimeters

Abdullah Al-Mashad, AvH, Kakkad,
Kotko, Kutak, van Mechelen, Sapeta

2022

FCAL ATLAS kinematics FoCal ALICE kinematics

Predictions for the nuclear modification ratio Rp−pB =
(
dσp+Pb/d∆Φ

)
/
(
dσp+p/d∆Φ

)
as

function of the azimuthal angle ∆Φ between the two hardes jets p-p and p-Pb collisions.

Points with error bars are corrected with final-state shower effects using Pythia, and rep-
resent uncertainty both form statistics and scale dependence.

Sudakov factors, feared to wash out saturation effects, appear to cancel and the latter stay
manifest.
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| NLO|
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|Collinear factorization at NLO|

dσLO =
∑
i,ı

∫
dxdx̄ fi(x) fı(x̄)dBiı(x, x̄)

aϵ =
αs

2π

(4π)ϵ

Γ(1− ϵ)

dσNLO =
∑
i,ı

∫
dxdx̄ fi(x) fı(x̄)

{[
aϵ dViı(x, x̄)+aϵ dRiı(x, x̄)

]
finite

− aϵ

[
1

ϵ

∑
i ′

∫ 1

x

dz

z
Pii ′(z)

fi ′
(
x/z
)

fi(x)
+

1

ϵ

∑
ı ′

∫ 1

x̄

dz̄

z̄
Pıı ′(z̄)

fı ′
(
x̄/z̄
)

fı(x̄)

]
dBiı(x, x̄)

+ aϵ

[
δfi (x, µF)

fi(x)
+

δfı (x̄, µF̄)

fı(x̄)

]
dBiı(x, x̄)

}
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|Collinear factorization at NLO|

dσLO =
∑
i,ı

∫
dxdx̄ fi(x) fı(x̄)dBiı(x, x̄)

aϵ =
αs

2π

(4π)ϵ

Γ(1− ϵ)

dσNLO =
∑
i,ı

∫
dxdx̄ fi(x) fı(x̄)

{[
aϵ dViı(x, x̄)+aϵ dRiı(x, x̄)

]
finite

+ aϵ

[
ln
µ2

µ2
F

∑
i ′

∫ 1

x

dz

z
Pii ′(z)

fi ′
(
x/z
)

fi(x)
+ ln

µ2

µ2
F̄

∑
ı ′

∫ 1

x̄

dz̄

z̄
Pıı ′(z̄)

fı ′
(
x̄/z̄
)

fı(x̄)

]
dBiı(x, x̄)

+ aϵ

[
δffini (x, µF)

fi(x)
+

δffinı (x̄, µF̄)

fı(x̄)

]
dBiı(x, x̄)

}

dffini (x, µF)

dlnµ2
F

= aϵ

∑
i ′

∫ 1

x

dz

z
Pii ′(z) f

fin
i ′

(
x/z, µF

)
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|Collinear factorization at NLO|

dσLO =
∑
i,ı

∫
dxdx̄ fi(x) fı(x̄)dBiı(x, x̄)

aϵ =
αs

2π

(4π)ϵ

Γ(1− ϵ)

dσNLO =
∑
i,ı

∫
dxdx̄ fi(x) fı(x̄)

{[
aϵ dViı(x, x̄)+aϵ dRiı(x, x̄)

]
finite

+ aϵ

[
ln
µ2

µ2
F

∑
i ′

∫ 1

x

dz

z
Pii ′(z)

fi ′
(
x/z
)

fi(x)
+ ln

µ2

µ2
F̄

∑
ı ′

∫ 1

x̄

dz̄

z̄
Pıı ′(z̄)

fı ′
(
x̄/z̄
)

fı(x̄)

]
dBiı(x, x̄)

+ aϵ

[
δffini (x, µF)

fi(x)
+

δffinı (x̄, µF̄)

fı(x̄)

]
dBiı(x, x̄)

}

dffini (x, µF)

dlnµ2
F

= aϵ

∑
i ′

∫ 1

x

dz

z
Pii ′(z) f

fin
i ′

(
x/z, µF

)

Establish the same for dσLO =
∑
ı

∫
dx

∫
d2k⊥

π

∫
dx̄ F(x, k⊥) fı(x̄)dB⋆ı(x, k⊥, x̄)
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|Hybrid kT -factorization at NLO|

A. van Hameren, L. Motyka and G. Ziarko,
“Hybrid kT -factorization and impact factors at NLO,”
JHEP 11 (2022), 103, arXiv:2205.09585,
doi:10.1007/JHEP11(2022)103

E. Blanco, A. Giachino, A. van Hameren and P. Kotko,
“One-loop gauge invariant amplitudes with a space-like gluon,”
Nucl. Phys. B 995 (2023), 116322, arXiv:2212.03572,
doi:10.1016/j.nuclphysb.2023.116322

A. Giachino, A. van Hameren and G. Ziarko,
“A new subtraction scheme at NLO exploiting the privilege of kT -factorization,”
JHEP 06 (2024), 167, arXiv:2312.02808,
doi:10.1007/JHEP06(2024)167

A. van Hameren and M. Nefedov,
“Hybrid high-energy factorization and evolution at NLO from the high-energy limit of
collinear factorization,”
JHEP 02 (2025), 160, arXiv:2501.02619,
doi:10.1007/JHEP02(2025)160
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|Embedding in collinear factorization|

λP

H

Yµ

rapidity

P̄ projectile hadron

target hadron

Consider hadron collisions, with production of the final
state of interest H:

h(λP) + h(P̄) → H + X

We assume that there is a natural rapidity Yµ associated
withH, which separates the event into “target” and “pro-
jectile” parts. Then we can define

x =
∑
j

θ
(
yj < Yµ

) pj ·P̄
P·P̄

, k⊥ = −
∑
j

θ
(
yj < Yµ

)
pj⊥

And the (Collins-Soper) scale µY via

Yµ = ln
νx

µY

, ν2 = (P + P̄)2

Due to IRC-safety of variables x and k⊥, the hadronic differential cross section

dσCF
λ

dxd2k⊥

(
x, k⊥, . . .

)
=

∑
i,ı

∫ 1

0

dX fi(X)

∫ 1

0

dx̄ fı(x̄)
dσ̂CF

iı

dxd2k⊥

(
λX, x̄ ; x, k⊥, . . .

)
should be computable in collinear factorization, at least up to NLO, and in the limit:

λ → ∞ , x, k⊥– fixed .
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|Recovering high-energy factorization|

Demand of consistency and cancellation of all divergences leads to a hierarchy of large
rapidities separating the phase space, recovering “usual high-energy factorization”.

Yµ + ln λ

Yµ + ln λ0

Yµ + ln λ1

Yµ = ln
νx

µY

LO NLO target NLO Green’s
function

NLO projectilenon kT -fact.

rapidity
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|Evolution equations|
We find an equation for evolution with respect to µY ⇔ Yµ

dF̂(x, k⊥;µY)

dlnµ2
Y

=
αsNc

2π2

∫
d2r⊥

|r⊥|2

{
F̂

(
x

[
1+

|r⊥|

µY

]
, k⊥+r⊥;µY

)
θ

(
|r⊥| < µY

1− x

x

)
− θ

(
µY−|r⊥|

)
F̂(x, k⊥;µY)

}

• Very similar to the equation from Born-Oppenheimer renormalization group by
Duan, Kovner, Lublinsky 2024

• Closely related to the LO Collins-Soper-Sterman equation
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|Evolution equations|
We find an equation for evolution with respect to µY ⇔ Yµ

dF̂(x, k⊥;µY)

dlnµ2
Y

=
αsNc

2π2

∫
d2r⊥

|r⊥|2

{
F̂

(
x

[
1+

|r⊥|

µY

]
, k⊥+r⊥;µY

)
θ

(
|r⊥| < µY

1− x

x

)
− θ

(
µY−|r⊥|

)
F̂(x, k⊥;µY)

}
This equation resums ln

(
µ2
Y/|k⊥|

)
.

The initial-condition to this equation is found to be

F
(
x, k⊥, µY = |k⊥|

)
=

∑
i

∫ 1

x

dX fi(X, µF)

∫
d2−2ϵk ′

⊥Ii
(
k ′

⊥, µF

)
G

(
k ′

⊥, k⊥,
X

x
, µF

)
reproducing known expressions for target-side inpact factor corrections Ii

(
k ′

⊥, µF

)
and recovering the Green’s function G

(
k ′

⊥, k⊥,
X
x
, µF

)
in terms of the LO BFKL kernel,

resumming ln
(
X/x

)
.
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|Summary|

• ITMD factorization provides a momentum-space formula suitable to study saturation
in QCD within an automatable Monte Carlo approach

• collinear embedding appears to be be a powerfull strategy to extract NLO formulas for
cross sections and evolution equations within kT -type factorization
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|Backup|
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|Augmented TMD evolution| Kwieciński, Martin, Staśto 1997

Kwieciński, Kutak 2003

ϕ(x, k2) = ϕ(0)(x, k2)

+
αs(k

2)Nc

π

∫ 1

x

dz

z

∫∞
k20

dl2

l2

{
l2ϕ(x

z
, l2)θ(k

2

z
− l2) − k2ϕ(x

z
, k2)

|l2 − k2|
+

k2ϕ(x
z
, k2))√

|4l4 + k4|

}

+
αs(k

2)

2πk2

∫ 1

x

dz

(
Pgg(z) −

2Nc

z

) ∫ k2

k20

dl2 ϕ

(
x

z
, l2
)
+

αs(k
2)

2π

∫ 1

x

dzPgq(z)Σ

(
x

z
, k2

)

−
2α2

s(k
2)

R2

[( ∫∞
k2

dl2

l2
ϕ(x, l2)

)2

+ ϕ(x, k2)

∫∞
k2

dl2

l2
ln

(
l2

k2

)
ϕ(x, l2)

]

linear BFKL with kinematic constraint

non-linear term from triple-pomeron vertex, with RA = RA1/3

DGLAP corrections
Kutak, Sapeta 2012:

Starting distribution ϕ(0)(x, k2) =
αs(k

2)

2πk2

∫ 1

x

dzPgg(z)
x

z
g
(x
z

)
, xg(x) = N(1−x)β(1−Dx)

fitted to combined HERA F2 data, and with ϕ(x, k2 < 1) = k2ϕ(x, 1).
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|ITMD∗ factorization for more than 2 jets|

We want to establish a similar factorization for more than 2 jets.

However, the ITMD formalism does not account for linearly polarized gluons in unpolarized
target.

Such a contribution is absent for massless 2-particle production in CGC theory, but does
appear in heavy quark production (Marquet, Roiesnes, Taels 2018), in the correlation limit
for 3-parton final-states (Altinoluk, Boussarie, Marquet, Taels 2020), and can be concluded
to be present from 3-jet formulae in CGC (Iancu, Mulian 2019).

This contribution cannot staightforwardly be formulated in terms of gauge-invariant off-
shell hard scattering amplitudes

∑
i,j

M∗
i

(
k
(i)
T k

(j)
T

2|⃗kT |2
(F +H) +

q
(i)
T q

(j)
T

2|q⃗T |2
(F −H)

)
Mj , q⃗T · k⃗T = 0

∑
i Mik

(i)
T is gauge invariant while

∑
i Miq

(i)
T is not. For dijets, it happens that F = H.

In the following only the manifestly gauge-invariant contribution is included, hence the
designation ITMD∗.
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We want to establish a similar factorization for more than 2 jets.

However, the ITMD formalism does not account for linearly polarized gluons in unpolarized
target.

Such a contribution is absent for massless 2-particle production in CGC theory, but does
appear in heavy quark production (Marquet, Roiesnes, Taels 2018), in the correlation limit
for 3-parton final-states (Altinoluk, Boussarie, Marquet, Taels 2020), and can be concluded
to be present from 3-jet formulae in CGC (Iancu, Mulian 2019).

This contribution cannot staightforwardly be formulated in terms of gauge-invariant off-
shell hard scattering amplitudes

∑
i,j

M∗
i

(
k
(i)
T k

(j)
T

2|⃗kT |2
(F +H) +

q
(i)
T q

(j)
T

2|q⃗T |2
(F −H)

)
Mj , q⃗T · k⃗T = 0

∑
i Mik

(i)
T is gauge invariant while

∑
i Miq

(i)
T is not. For dijets, it happens that F = H.

In the following only the manifestly gauge-invariant contribution is included, hence the
designation ITMD∗.

Using the axial gauge with gluon propagator

−i

K2

(
gµν −

PµKν + KµPν

P·K

)
Pµ hadron momentum

the amplitude M for a process involving an off-shell gluon with
momentum xPµ + kµ

T can be written as

M = kµ
TMµ = −

2∑
i=1

k
(i)
T Mi

where Mµ is obtained from the usual Feynman graphs indeed
with one gluon simply left “off-shell”. The role of “polarization
vector” is played by kµ

T .
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