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HERA: proton structure at small x
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The behaviour of F, at small x
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At small x, the protons are (mainly) made of gluons

The QCD structure of protons

whose number rises as a power law

H1 and Zeus (2015)
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QCD: gluon saturation at small x
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QCD: gluon saturation at small x

Gribov, Levin, Ryskin (1983)
Muller (1989)

Balitsky (1996),

Kovchegov (1999), (2000) ...

6 Guillermo Contreras, CTU in Prague



http://inspirehep.net/record/200601?ln=en
http://www.apple.com/uk
https://inspirehep.net/literature/399690
https://inspirehep.net/literature/493965
https://inspirehep.net/literature/499236

QCD: gluon saturation at small x

The cross section cannot grow "forever" as a
power law without violating basic tenets of QM
In QCD a mechanism to deal with this is to include, besides
gluon splitting, also gluon recombination processes
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QCD: gluon saturation at small x

Gribov, Levin, Ryskin (1983)
Muller (1989)

Balitsky (1996),

Kovchegov (1999), (2000) ...

The cross section cannot grow "forever" as a
power law without violating basic tenets of QM
In QCD a mechanism to deal with this is to include, besides
gluon splitting, also gluon recombination processes
Gluon saturation sets in when the creation and
annihilation of gluons reach a dynamic equilibrium

It is not know when saturation sets in: this is

one of the prime open questions in QCD today
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Diffractive vector meson production and saturation

To look for saturation, we want a process that is very sensitive to the gluon distribution in

hadrons and that can be experimentally studied in a large range of x at a fixed Q2

In QCD particles interact strongly, without exchanging net colour charges, in processes that are called
diffractive. In particular, a photon can interact diffractively to create a vector meson like the J/y orp or ....
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Diffractive vector meson production and saturation

Ryskin (1993)

To look for saturation, we want a process that is very sensitive to the gluon distribution in

hadrons and that can be experimentally studied in a large range of x at a fixed Q2

vl m

] — X [xG(x Qz)]

Scale normally taken as (m? + Q?)/4

m 1S the vector meson mass

W 1s the centre — of — mass energy of the photon — proton sytem v Guillermo Contreras, CTU in Prague
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Diffractive vector meson production and saturation

Ryskin (1993)

To look for saturation, we want a process that is very sensitive to the gluon distribution in

hadrons and that can be experimentally studied in a large range of x at a fixed Q2

vl m

] — X [xG(x QZ)]

Scale normally taken as (m? + Q?)/4

Thus, the diffractive J/¥ production provides us with

a good chance to find the real position of the saturation
boundary and, hence, to answer this question.

m 1S the vector meson mass

W 1s the centre — of — mass energy of the photon — proton sytem v Guillermo Contreras, CTU in Prague
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The Good-Walker approach

Good and Walker (1960)
Miettinen and Pumpling (1979)
Mantysaari and Schenke (2016) ...
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The Good-Walker approach

Good and Walker (1960)

Miettinen and Pumpling (1979) There are two types of diffractive vector meson production

Mantysaari and Schenke (2016) ...
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Coherent: interaction ___.
with all the target B » Incoherent: interaction
| ' with a piece of the target
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The Good-Walker approach

Good and Walker (1960)

Miettinen and Pumpling (1979) There are two types of diffractive vector meson production

Mantysaari and Schenke (2016) ...

In diffraction there is no colour exchange:
The incoming hadron can be seen as a superposition of basis states, each of which is absorbed differently

Vector meson Vector meson
Coherent: interaction

with all the target

Incoherent: interaction
with a piece of the target

P X

welewen[ G aneiol)- [t

In this picture, coherent diffractive vector meson production is proportional to the average over all colour

configurations of the target, while incoherent production is proportional to their variance
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Diffractive vector meson production and saturation

Vector meson Vector meson

Coherent: interaction :
with all the target & Incoherent: interaction
| i ' - with a piece of the target

% ~ |<A(x, Qz,t)> |2 % X (( |A(x, Qz,t)|2> — |<A(X, Qz,t)> |2>

There is no reason to expect that coherent and incoherent vector meson production should have

the same signhature of gluon saturation — both processes should be studied in detalil
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HERA: diffractive vector meson production
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Coherent vector meson production:

Mandelstam-t dependence

H1 (2006)
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Coherent vector meson production: Mandelstam-t is related, through a Fourier
Mandelstam-t dependence transform, with the impact-parameter plane

H1 (2006)

Data are well described by an exponential (of slope b) which

implies a gaussian distribution in the impact-parameter plane
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Coherent vector meson production: Mandelstam-t is related, through a Fourier
Mandelstam-t dependence transform, with the impact-parameter plane

Data are well described by an exponential (of slope b) which

implies a gaussian distribution in the impact-parameter plane

In photo-production, the inferred size of the target grows
logarithmically with energy
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Newman and Wing (2014)

Coherent vector meson production: :
Mass and energy dependence | we-e
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Coherent vector meson production:
Mass and energy dependence

The energy dependence of coherent vector-meson photo-
production has been studied extensively up to 200 GeV for vector

mesons with masses from below 1 GeV/c? to 9.46 GeV/c?

The cross section rises with energy as a power law, with the
exponent growing as the vector-meson mass increases
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Coherent vector meson production:
Mass and energy dependence

The energy dependence of coherent vector-meson photo-
production has been studied extensively up to 200 GeV for vector

mesons with masses from below 1 GeV/c? to 9.46 GeV/c?

Consistent with the gluon distribution
increasing as a power law at a fixed scale

The cross section rises with energy as a power law, with the
exponent growing as the vector-meson mass increases
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Coherent vector meson production:
Mass and energy dependence

The energy dependence of coherent vector-meson photo-
production has been studied extensively up to 200 GeV for vector

mesons with masses from below 1 GeV/c? to 9.46 GeV/c?

Consistent with the gluon distribution
increasing as a power law at a fixed scale

The cross section rises with energy as a power law, with the
exponent growing as the vector-meson mass increases

EIC: interesting to see these plots as a function of A
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Incoherent vector meson production
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Incoherent vector meson production
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HOTSPOT SNAPSHOTS
In pursuit of gluon saturation

The energy-dependent hotspot model
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The energy-dependent hotspot model

Cepila, JGC, Tapia Takaki (2017)

Assume that the proton is made of hotspots
distributed randomly in impact parameter:

The positions of the hot spots are obtained e-by-e
from a Gaussian distribution representing the proton

The hot spots have a Gaussian shape in
Impact parameter
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The energy_dependent hOtSpOt model Assume that the number of hotspots grows
Cepila, JGC, Tapia Takaki (2017) with energy to mimic what is expected in QCD
Assume that the proton is made of hotspots
distributed randomly in impact parameter:
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The energy-dependent hotspot model

Cepila, JGC, Tapia Takaki (2017)

Assume that the proton is made of hotspots
distributed randomly in impact parameter:

The positions of the hot spots are obtained e-by-e
from a Gaussian distribution representing the proton

The hot spots have a Gaussian shape in
Impact parameter

15

Assume that the number of hotspots grows

with energy to mimic what is expected in QCD
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The energy-dependent hotspot model

Assume that the number of hotspots grows

Cepila, JGC, Tapia Takaki (2017) with energy to mimic what is expected in QCD

Assume that the proton is made of hotspots All configurations resemble each other,

distributed randomly in impact parameter: the variance is expected to decrease
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Comparison to data

Cepila, JGC, Matas, Ridzikova (2024)
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HERA, and LHC, data for coherent and incoherent J/y and p production reasonably well described
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Comparison to data

Cepila, JGC, Matas, Ridzikova (2024)
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HERA, and LHC, data for coherent and incoherent J/{ and p production reasonably well described
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Comparison to data

H1: caveats both from the experimental (phase space)
and phenomenological side (non perturbative scale)

Cepila, JGC, Matas, Ridzikova (2024)
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Position of maxima

Bendova, Cepila, JGC (2019)

The position of the maximum in the (scale, x) plane
changes logarithmically according to this model
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Position of maxima

Bendova, Cepila, JGC (2019)
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LHC: diffractive vector meson production
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Nuclei as targets

In nuclei, saturation effects are expected to appear
at a smaller energy than in p
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But in nuclei there is also shadowing: the experimental

Nuclei as targets
fact that the gluon distribution in nuclei is less than the

sum of the gluon distributions of its individual nucleons

In nuclei, saturation effects are expected to appear
at a smaller energy than in p EPPS16 (2017)
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Nuclei as targets

But in nuclei there is also shadowing: the experimental
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Coherent J/U production at the LHC
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Above 100 GeV, saturation- and
shadowing-based models provide
a good description of data

Other observables are needed
to pin down saturation
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Coherent J/U production at the LHC

Mandelstam-t dependence measured with HERA-like

precision down to zero momentum transfer

do p,/dlt] (mb ¢ GeV?)

Model / Data

21

10 ALICE Pb+Pb — Pb+Pb+J/y |5,y = 5.02 TeV .
~ N ALICE coherent JA, |y|<0.8 -
i <N -+ Experimental uncorrelated syst. + stat.
B \p;'}\_. Experimental correlated syst. )
> \\\\, UPC to yPb model uncertainty
[ — I — |
A}
N
T -
. — STARIight (Pb form factor) —_
— - LTA (nuclear shadowing) AN —
— — - b-BK (gluon saturation) \\{ .
\ \
B NS _
N
| AN |
ol ® o STARlight/ Data_|
O
o LTA/ Data
1 5 B - O - _
O o v b-BK/ Data
LA oy . i """ -
0 0.002 0.004 0.006 0.008 0.01 0.012
2 -
t| (GeV? ¢d)
Guillermo Contreras, CTU in Prague



https://inspirehep.net/literature/1840600

Coherent J/U production at the LHC

Mandelstam-t dependence measured with HERA-like

precision down to zero momentum transfer

Comparison of data with STARIlight, suggests that

the QCD size of Pb seems to grow with energy
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Coherent J/U production at the LHC

Mandelstam-t dependence measured with HERA-like

precision down to zero momentum transfer

Comparison of data with STARlight, suggests that
the QCD size of Pb seems to grow with energy

Saturation- and shadowing-based models provide a
good description of data
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Incoherent J/U production at the LHC

There is no reason to expect saturation to appear simultaneously at all size scales in the transverse plane.

Diffractive incoherent photonuclear production at large Mandelstam-t looks like a good place to look for saturation
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Incoherent J/U production at the LHC

There is no reason to expect saturation to appear simultaneously at all size scales in the transverse plane.
Diffractive incoherent photonuclear production at large Mandelstam-t looks like a good place to look for saturation

ALICE, UPC Pb-Pb {5y =5.02 TeV

C\T\ I I I IIIIIII I IllllllI 1 | | IIIIII| | | IIIIII| i | | ||||||| I T 1T 1T 11 |

= | (0.09<]t]|<0.36) GeV-? e (0.36 < |t | < 0.81) GeV? I (0.81 < |t| < 1.44) GeV-? ]

fo)

L3

— 10E EVNEY T

o T

o T

al - 4

S |

£/|\> ----- Guzey et al. (shadowing)

all 1 —— Cepila et al. (saturation) 1

%' - - - - Mantysaari et al. (saturation) T

O - T

] ! Lo aal ! ! Lo 1 l Lol l Lo ol l Lo o ol l ' B B B
20 30 102 2x107 10° 20 30 102 2x107 10° 20 30 10?2 2x107 10°

Wbe,n (GeV)

Bjorken-x dependence measured in a large energy range for different Mandelstam-t ranges

22

Guillermo Contreras, CTU in Prague



https://inspirehep.net/literature/2903550

Incoherent J/U production at the LHC
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Incoherent J/U production at the LHC

(ob/GeV?)
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This shadowing model (that described all other measurements) seems to have problems to follow the measured trends
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Incoherent J/U production at the LHC
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Two saturation-based models differ in the predicted behaviour at high energies and high Mandelstam-t:

data cannot (yet?) decide if the cross section starts to decrease
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LHC: nuclear shape?
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LHC: nuclear shape?

EIC will be an ideal place to study this in detail
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OO predictions

Cepila, JGC, Matas, Ridzikova (2025)

In July 2025, LHC provided pO, OO, and Ne-Ne collisions
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OO predictions

Cepila, JGC, Matas, Ridzikova (2025)

In July 2025, LHC provided pO, OO, and Ne-Ne collisions
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OO predictions
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OO predictions

Cepila, JGC, Matas, Ridzikova (2025)

In July 2025, LHC provided pO, OO, and Ne-Ne collisions
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The dependence on Mandelstam-t of incoherent cross

section is sensitive to saturation and nuclear shape
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EIC: some potential lessons
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From HERA to EIC through UPC at LHC

A rich trove of results from HERA, including technical aspects.

Many students at EIC will be too young to be aware of
these measurements: do not let these results be forgotten

27

Guillermo Contreras, CTU in Prague




From HERA to EIC through UPC at LHC

A rich trove of results from HERA, including technical aspects.

Many students at EIC will be too young to be aware of
these measurements: do not let these results be forgotten

Exploit your precision and your large coverage of vector-meson masses, kinematics, targets, ...
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From HERA to EIC through UPC at LHC

A rich trove of results from HERA, including technical aspects.

Many students at EIC will be too young to be aware of
these measurements: do not let these results be forgotten

Exploit your precision and your large coverage of vector-meson masses, kinematics, targets, ...

Saturation will be established by consistency between many different
measurements and the QCD evolution of the observables

LHC was not designed nor operated to perform this type of measurements; nonetheless, current
results, which were not contemplated when the LHC was planned, have HERA like precision

Encourage students to look for new ways to look for saturation (and/or other
phenomena) even if the machine/detector was not designed for it
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Incoherent vector meson production offers a
window to fluctuations of the gluon field
It also provides, within the Good-Walker approach,
a striking signature for saturation

LHC results are reaching HERA like precision and
cover a variety of observables
HERA+LHC/RHIC are a rich testing ground for new
ideas and methods for EIC
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