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Introduction: Gluon saturation and DIS at NLO

Gluon saturation: towards precision
Non-linear gluon saturation dynamics predicted from QCD theory in the high-energy/low
x limit: beyond the scope of the QCD parton picture (PDFs, TMDs, GPDs, etc...).

• Difficult to observe experimentally unambiguously (inconclusive at HERA)
• Need precise data and theory predictions for multiple observables both in DIS and
in hadron collisions

• Including case of large nucleus targets to enhance non-linear effects

⇒ One of the main parts of the EIC physics programme, in synergy with the LHC

Motivates improving the precision of the theoretical calculations in non-linear QCD at
low x (CGC) :

• NLO corrections known for low x evolution equations (BFKL, BK, JIMWLK),
and NNLO corrections partially known

• NLO corrections already known for
• various inclusive, semi-inclusive, diffractive and exclusive observables in DIS
• forward production of hadron or jet in pp/pA collisions

• Next-to-leading power corrections at high-energy beyond the eikonal approximation
being explored (See next talk, from Tolga)
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Introduction: Gluon saturation and DIS at NLO

Dipole factorization of DIS at low x at NLO
Standard observable for gluon saturation: inclusive DIS structure functions FT,L
At leading power at low x, dipole factorization of FT,L

⊗ ⊗

k+
0 , x0

k+
1 , x1

q+, Q2

⊗ ⊗

k+
0 , x0

k+
2 , x2

k+
1 , x1

q+, Q2

FT,L ∝ 2Nc

∑̃
q0q̄1 F. states

(2q+)2πδ(k+0 +k+1 −q+)
∣∣∣ψ̃γT,L→q0q̄1

∣∣∣2 Re [1− S01]

+2NcCF

∑̃
q0q̄1g2 F. states

(2q+)2πδ(k+0 +k+1 +k+2 −q+)
∣∣∣ψ̃γT,L→q0q̄1g2

∣∣∣2 Re
[
1− S(3)

012

]
+O(αem α2

s)

Eikonal multiple scattering of each parton on the target resummed thanks to Wilson
lines UF,A(xn)

Dipole factorization at LO: Nikolaev, Zakharov (1990)

qq̄ dipole operator: S01 =
1

Nc
Tr

(
UF (x0)U

†
F (x1)

)
G. Beuf (NCBJ, Warsaw) FL at NLO with rap. regulators Sept. 24, 2025 3 / 22



Introduction: Gluon saturation and DIS at NLO

Dipole factorization of DIS at low x at NLO
Standard observable for gluon saturation: inclusive DIS structure functions FT,L
At leading power at low x, dipole factorization of FT,L

⊗ ⊗

k+
0 , x0

k+
1 , x1

q+, Q2

⊗ ⊗

k+
0 , x0

k+
2 , x2

k+
1 , x1

q+, Q2

FT,L ∝ 2Nc

∑̃
q0q̄1 F. states

(2q+)2πδ(k+0 +k+1 −q+)
∣∣∣ψ̃γT,L→q0q̄1

∣∣∣2 Re [1− S01]

+2NcCF

∑̃
q0q̄1g2 F. states

(2q+)2πδ(k+0 +k+1 +k+2 −q+)
∣∣∣ψ̃γT,L→q0q̄1g2

∣∣∣2 Re
[
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012
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Dipole factorization at NLO:

• Massless quarks case: G.B. (2016-2017)

• Massive quarks case: G.B., Lappi, Paatelainen (2021-2022)

qq̄g ”tripole” operator: S(3)
012 ≡

1

NcCF
Tr

(
tbUF (x0) t

aU †
F (x1)

)
UA(x2)ba
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Introduction: Gluon saturation and DIS at NLO

Latest dipole fit, at NLO

Fit to HERA data on inclusive and charm
reduced DIS cross sections, using:

• Dipole factorization formula at NLO with
quark mass

• Improved LL BK equation, with
kinematical consistency constraint and
running coupling

• Uncertainties obtained from Bayesian
inference

Casuga, Hänninen, Mäntysaari (2025)
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Rapidity regulators

NLO CGC calculations : with standard cut-off

In NLO calculations with gluon saturation, for evolution equations, or DIS or pA
observables:

Most frequently used regularization technique (in particular in LFPT):

1 Perform transverse integration in dim. reg.
2 Expand in ϵ
3 And then perform integrations over k+ momenta regulated by a cut off k+min

Issues with this regularization procedure:

• Does not distinguish clearly soft divergences from rapidity/low x divergences

• Difficult to compare results with other pQCD communities, like TMD, jets, etc...

• Biases us to consider BK/JIMWLK as evolutions along k+ (related to projectile),
instead of k− (related to target), which is physically more natural for DIS.
(Smoother transition to DGLAP in the collinear regime)
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Rapidity regulators

Rapidity regulators from pQCD/TMD
Many new regulators for rapidity divergences have been proposed by the TMD and
SCET communities in the last 15 years

Some of them should be suitable as well in the context of low x physics/CGC, for
example:
Chiu, Jain, Neill, Rothstein, 2011-2012
Becher, Neubert, 2011
Ebert, Moult, Stewart, Tackmann, Vita, Zhu, 2019

Such rapidity regulators have been used for CGC observables, but in the language of
SCET, in Liu, Kang, Liu, 2020; Liu, Xie, Kang, Liu, 2022

A similar rapidity regulator has been proposed for CGC in LFPT in Liu, Ma, Chao, 2019,
at the level of each energy denominator
→ By experience, does not seem to work in full generality
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Rapidity regulators

Using rapidity regulators in NLO CGC calculations
3 versions of rapidity regularisation:

Introduce a factor in the loop integrand (with gluon momentum k)

• regulator in k+:
(
k+

ν+

)η
(inspired by Chiu, Jain, Neill, Rothstein, 2011-2012)

• regulator in k−:
(
ν−

k−

)η
∼

(
2k+ν−

k2

)η
• pure rapidity regulator:

(
k+

k−
ν−

ν+

) η
2 ∼

(
2(k+)2ν−

k2ν+

) η
2

(Ebert, Moult, Stewart,

Tackmann, Vita, Zhu, 2019)

In the 3 cases, transforms divergent dk+/k+ integrals over k+ into dk+(k+)−1+η.

Analogy with dim.reg. : η ↔ ϵ and ν± ↔ µ

Order of limits: take η → 0 at finite ϵ, and later expand in ϵ.

⇒ η regulates only rapidity/low x div., whereas ϵ regulates also soft div.

Aim: revisit the calculation of NLO DIS (FL, massless quarks) (G.B., 2016-2017) with
the + and − versions of the regulator validate their implementation in CGC in LFPT.

Remark: results with pure rapidity regulator can be obtained from the average of the +
and − versions.
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Rapidity regulators

Using rapidity regulators in NLO CGC calculations
From a diagram with dim. reg. and a rapidity regulator: typical expression for rapidity
sensitive terms of the form

I(ϵ, η) =

∫ 1

0
dξ ξ−1+η f(ξ, ϵ, η)

with ξ the k+ momentum fraction of the gluon in the loop.

Expansion around η = 0 at finite ϵ:

I(ϵ, η) =

∫ 1

0
dξ ξ−1+η f(0, ϵ, η) +

∫ 1

0
dξ ξ−1+η [f(ξ, ϵ, η)− f(0, ϵ, η)]

=
1

η
f(0, ϵ, η) +

∫ 1

0

dξ

(ξ)+
f(ξ, ϵ, 0) +O(η)

=
1

η
f(0, ϵ, 0) + (∂ηf) (0, ϵ, η = 0) +

∫ 1

0

dξ

(ξ)+
f(ξ, ϵ, 0) +O(η)

⇒ η pole and scheme dependent terms, and + prescription
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γ∗
L → qq̄ LFWF at one loop

Quark off-shell self-energy diagram
One loop corrections to the γ∗L → qq̄ Light-Front wave function found to factorize as:

ΨNLO
γ∗L→qq̄ =

(
1 +

αsCF
2π

VL
)

ΨLO
γ∗L→qq̄

Contribution of quark self-energy diagram

(Q
2 ≡ z(1−z)Q2), with dim. reg. only:

VLq S. E. =

∫ 1

0

dξ

ξ

[
− 2 +O(ξ)

]
4π µ2ϵ

∫
d2−2ϵK

(2π)2−2ϵ

1[
K2 + ξ(1−ξ)

(1−z) (P
2 +Q

2
)
]

=Γ(ϵ)

[
P2 +Q

2

4πµ2(1−z)

]−ϵ ∫ 1

0
dξ ξ−1−ϵ (1−ξ)−ϵ

[
− 2 +O(ξ)

]

Scale ∝ ξ in the denominator of K integral ⇒ ξ−ϵ factor regulating the ξ = 0 IR div.

Dim. reg. enough in that case: no rapidity divergence!

Full result, with UV times IR double ϵ pole (with Sϵ ≡ [4π e−γE ]
ϵ
):

VLq S. E. =2
Sϵ
ϵ2

[
P2+Q

2

µ2(1−z)

]−ϵ

+
3

2

Sϵ
ϵ

[
P2+Q

2

µ2(1−z)

]−ϵ

− π2

6
+

δs
2

+ 3 +O(ϵ)
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γ∗
L → qq̄ LFWF at one loop

Vertex correction
3 LFPT diagrams with vertex correction topology:

Individual diagrams have power divergences at ξ = 0 on top of log divergences
But power divergences (and some log) cancel between vertex correction LFPT diagrams

In the total the vertex correction:

• Terms with no potential div at ξ = 0 ⇒ dim. reg. enough (single ϵ UV pole)

VL
v. corr.

∣∣∣∣
rap. safe, 1

=
(z−2)

2

Sϵ

ϵ

[
Q

2

µ2

]−ϵ

−
3

2
log(1−z)−

δs z

2
+
z

2
− 2 +O(ϵ) + (z ↔ 1−z)

• Terms of the same type as quark self-energy ⇒ dim. reg. enough (double ϵ pole)
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VL
v. corr.

∣∣∣∣
rap. safe, 2

=

∫ 1

0

dξ

ξ
4π µ2ϵ

∫
d2−2ϵK

(2π)2−2ϵ

1[
K2 +

ξ(1−ξ)
(1−z)

(P2 +Q
2
)
] + (z ↔ 1−z)

= −
Sϵ

ϵ2

[
P2+Q

2

µ2(1−z)

]−ϵ

+
π2

12
+O(ϵ) + (z ↔ 1−z)
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γ∗
L → qq̄ LFWF at one loop

Vertex correction
3 LFPT diagrams with vertex correction topology:

Individual diagrams have power divergences at ξ = 0 on top of log divergences
But power divergences (and some log) cancel between vertex correction LFPT diagrams

In the total the vertex correction:

• Terms with no potential div at ξ = 0 ⇒ dim. reg. enough (single ϵ UV pole)

• Terms of the same type as quark self-energy ⇒ dim. reg. enough (double ϵ pole)

• Terms with potential div at ξ = 0 but finite K integral:

VL
v. corr.

∣∣∣∣
B0/ξ

=

∫ 1

0

dξ

ξ
(1−ξ)

[(
1+

zξ

(1−z)

)
P2 + (1−ξ)Q2

]
B0 + (z ↔ 1−z)

B0 ≡ 4π (µ2)ϵ
∫

d2−2ϵK

(2π)2−2ϵ

1

[K2 +∆1] [(K+ L)2 +∆2]

Dim. reg. insufficient in such term: Rapidity regulator needed!

Remark need to calculate the finite integral B0 with full ϵ dependence because of
the ordering of limits.
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γ∗
L → qq̄ LFWF at one loop

Rapidity singular contribution with η+ regulator

Introducing the factor (ξzq+/ν+)η, performing the K integral thanks to Feynman
parametrization, and changing variables:

VL
v. corr.

∣∣∣∣η+
B0/ξ

=

[
zq+

ν+

]η
Γ (1+ϵ)

[
4π µ2

]ϵ ∫ 1

0
dy y−1−ϵ+η

∫ 1

0
dζ ζη−1

[
1+

zζ

(1−z)

]−1−ϵ

×
[
(1−y) P2 + (1−yζ)Q2

]−1−ϵ
[(

(1−y) P2 + (1−yζ)Q2
)
+ yP2

(
1+

zζ

(1−z)

)]
+ (z ↔ 1−z)

Dim. reg. can regulate the y = 0 div, but rapidity regulator needed for the ζ = 0 div.

Separating the η pole piece and the + prescription piece:

VL
v. corr.

∣∣∣∣η+
B0/ξ; η pole

=
1

η

[
zq+

ν+

]η
Γ (1+ϵ)

[
4π µ2

]ϵ [
P2 +Q

2
] ∫ 1

0
dy y−1−ϵ+η

[
(1−y) P2 +Q

2
]−1−ϵ

+ (z ↔ 1−z)

=

[
1

η
+ log

(
zq+

ν+

)]−Sϵ

ϵ

[
Q

2

µ2

]−ϵ

+ 2 log

(
P2 +Q

2

Q
2

)
+O(ϵ)


−
Sϵ

ϵ2

[
P2+Q

2

µ2

]−ϵ

− Li2

(
P2

P2+Q
2

)
−
π2

12
+O(ϵ) +O(η) + (z ↔ 1−z)

Note: double pole in ϵ is a consequence of expanding in η first, at finite ϵ.
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γ∗
L → qq̄ LFWF at one loop
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VL
v. corr.
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4π µ2

]ϵ ∫ 1
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dζ ζη−1
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zζ

(1−z)
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)
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zζ
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Dim. reg. can regulate the y = 0 div, but rapidity regulator needed for the ζ = 0 div.

Separating the η pole piece and the + prescription piece:

VL
v. corr.

∣∣∣∣η+
B0/ξ; + prescr.

= Γ (1+ϵ)
[
4π µ2

]ϵ ∫ 1

0

dζ

(ζ)+

∫ 1

0
dy y−1−ϵ

[
1+

zζ

(1−z)

]−1−ϵ

×
[(

(1−y) P2 + (1−yζ)Q2
)]−1−ϵ

{[
(1−y) P2 + (1−yζ)Q2

]
+ yP2

(
1+

zζ

(1−z)

)}
+O(η) + (z ↔ 1−z)

= − log(1−z)
Sϵ

ϵ

[
P2 +Q

2

µ2

]−ϵ

−
1

2

[
log(1−z)

]2
− Li2

(
−

z

(1−z)

)
+ Li2

(
P2

P2+Q
2

)
+O(ϵ) +O(η) + (z ↔ 1−z)
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γ∗
L → qq̄ LFWF at one loop

Rapidity singular contribution with η− regulator

Introducing instead the factor (2ξzq+ν−/K2)η, and following similar steps:

• The η pole piece is now obtained as

VL
v. corr.

∣∣∣∣η−
B0/ξ; η pole

=

[
1

η
+ log

(
2zq+ν−

P2 +Q
2

)]−Sϵ

ϵ

[
Q

2

µ2

]−ϵ

+ 2 log

(
P2 +Q

2

Q
2

)
+O(ϵ)


−
π2

3
+O(ϵ) +O(η) + (z ↔ 1−z)

• Same + prescription piece is obtained as with the rapidity regulator in k+
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γ∗
L → qq̄ LFWF at one loop

On-loop γ∗
L → qq̄ LFWF in momentum space

Collecting all one-loop corrections to the γ∗L → qq̄ LFWF:

• Result with rapidity regulator in k+:

VL

∣∣∣∣η+ =

[
2

η
+ 2 log

(
q+

ν+

)
+ log (z(1−z))−

3

2

]−Sϵ

ϵ

[
Q

2

µ2

]−ϵ

+ 2 log

(
P2+Q

2

Q
2

)
+O(ϵ)


+

1

2

[
log

(
z

1−z

)]2
−
π2

6
+

(5+δs)

2
+O(ϵ) +O(η)

→ Very similar as earlier results with cut-off in k+ from G.B., 2016.

• Result with rapidity regulator in k−:

VL

∣∣∣∣η− =

[
2

η
+ 2 log

(
2q+ν−

Q
2

)
+ log (z(1−z))−

3

2

]−Sϵ

ϵ

[
Q

2

µ2

]−ϵ

+ 2 log

(
P2+Q

2

Q
2

)
+O(ϵ)


+2

Sϵ

ϵ2

[
Q

2

µ2

]−ϵ

+ 2Li2

(
P2

P2+Q
2

)
− 3

[
log

(
P2+Q

2

Q
2

)]2

+
1

2

[
log

(
z

1−z

)]2
−

2π2

3
+

(5 + δs)

2
+O(ϵ) +O(η)

→ New: double pole in ϵ, and non-trivial dependence on relative momentum P of the
dipole.
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γ∗
L → qq̄ LFWF at one loop

On-loop γ∗
L → qq̄ LFWF in mixed space

Taking Fourier transform from P to dipole size x01:

One loop corrections to the γ∗L → qq̄ LFWF still factorizes in mixed space:

Ψ̃NLO
γ∗
L
→qq̄ =

(
1 +

αsCF

2π
ṼL

)
Ψ̃LO

γ∗
L
→qq̄

• With rapidity regulator in k+:

ṼL

∣∣∣∣η+ = −
[
2

η
+ 2 log

(
q+

ν+

)
+ log (z(1−z))−

3

2

]
Γ(1−ϵ)

ϵ

[
πµ2x2

01

]ϵ
+

1

2

[
log

(
z

1−z

)]2
−
π2

6
+

(5+δs)

2
+O(ϵ) +O(η)

• With rapidity regulator in k− (with c0 ≡ 2e−γE ):

ṼL

∣∣∣∣η− = −
[
2

η
+ 2 log

(
2q+ν−x2

01

c20

)
+ log (z(1−z))−

3

2

]
Γ(1−ϵ)

ϵ

[
πµ2x2

01

]ϵ
+2

Sϵ

ϵ2

[
x2
01µ

2

c20

]ϵ
+

1

2

[
log

(
z

1−z

)]2
−
π2

3
+

(5 + δs)

2
+O(ϵ) +O(η)

Differences: double pole term in ϵ, and scale for rapidity/low x log.
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γ∗
L → qq̄ LFWF at one loop

On-loop γ∗
L → qq̄ LFWF in mixed space

qq̄ contribution to FL structure function at NLO:

FL|qq̄ =16Q4Nc

∑
f

e2f

∫ 1

0
dz z2(1−z)2

∫
d2−2ϵx0

(2π)2

∫
d2−2ϵx1

(2π)2
Re [1−S01]

×
(
4π2µ2x2

01

Q
2

)ϵ [
Kϵ
(
Q|x01|

) ]2 (
1 +

αsCF

π
ṼL

)

• With rapidity regulator in k+:

ṼL

∣∣∣∣η+ = −
[
2

η
+ 2 log

(
q+

ν+

)
+ log (z(1−z))−

3

2

]
Γ(1−ϵ)

ϵ

[
πµ2x2

01

]ϵ
+

1

2

[
log

(
z

1−z

)]2
−
π2

6
+

(5+δs)

2
+O(ϵ) +O(η)

• With rapidity regulator in k− (with c0 ≡ 2e−γE ):

ṼL

∣∣∣∣η− = −
[
2

η
+ 2 log

(
2q+ν−x2

01

c20

)
+ log (z(1−z))−

3

2

]
Γ(1−ϵ)

ϵ

[
πµ2x2

01

]ϵ
+2

Sϵ

ϵ2

[
x2
01µ

2

c20

]ϵ
+

1

2

[
log

(
z

1−z

)]2
−
π2

3
+

(5 + δs)

2
+O(ϵ) +O(η)

Differences: double pole term in ϵ, and scale for rapidity/low x log.
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qq̄g contribution to NLO FL

qq̄g contribution to FL: Rapidity safe terms
Other contributions to FL at NLO at low xBj : qq̄g Fock state scattering on the target

Can be split into regular terms and potentially log divergent terms at ξ = 0

Regular terms at ξ = 0 don’t need rapidity regularization ⇒ same results as G.B., 2017

Reminder: UV divergent terms for gluon close to the quark (x2 → x0) or to the
antiquark (x2 → x1) have a qq̄ dipole form, thanks to color coherence
→ should cancel with UV divergences from the genuine qq̄ Fock state contribution

• Extract UV divergent dipole-like contribution (to be combined with the qq̄
contribution)

ṼL
qq̄g; ξ reg.; UV = −

3

2

Sϵ

ϵ

[
x2
01µ

2

c20

]ϵ
−
δs

2
+O(ϵ)

• Same UV-subtracted leftover from the terms regular terms at ξ = 0 as in G.B.,
2017
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qq̄g contribution to NLO FL

qq̄g contribution to FL: Rapidity safe terms

• Same UV-subtracted leftover from the terms regular terms at ξ = 0 as in G.B.,
2017:

FL

∣∣∣qq̄g reg.
=16Q2Nc

(
αsCF

π

)∑
f

e2f

∫ 1

0
dz z(1−z)

∫
d2x0

(2π)2

∫
d2x1

(2π)2

∫
d2x2

2π

∫ 1

0
dξ

×
{(

− 2 + ξ
) [x20

x2
20

·
(
x20

x2
20

−
x21

x2
21

)]{[
K0 (QX012)

]2
Re
[
1−S(3)

012

]
−
(
x2 → x0

)}

+ ξ
x20 ·x21

x2
20 x

2
21

[
K0 (QX012)

]2
Re
[
1−S(3)

012

]}
+O(ϵ) + (q ↔ q̄)

X2
012 ≡

1

(q+)2

[
k+0 k

+
1 x2

01 + k+2 k
+
0 x2

20 + k+2 k
+
1 x2

21

]
= z(1−z)(1−ξ)x2

01 + z2ξ(1−ξ)x2
20 + z(1−z)ξx2

21

S(3)
012 ≡

1

NcCF
Tr
(
tbUF (x0)t

aUF (x1)
†
)
UA(x2)ba

Term (q ↔ q̄): similar integrand, up to the exchanges x0 ↔ x1 and z ↔ 1− z.
⇒ same contribution to FL, after the integrations.
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qq̄g contribution to NLO FL

qq̄g contribution to FL: Rapidity sensitive terms

Rapidity divergent piece of the qq̄g contribution:

FL|qq̄g1/ξ
=

16Q4

2π
Nc

∑
f

e2f

∫ 1

0
dz z2(1−z)2

∫
d2−2ϵx0

∫
d2−2ϵx1

αsCF

π

∫
d2−2ϵx2

× Re
[
1−S(3)

012

] ∫ 1

0
dξ

2

ξ

{
|Ij(a)|2 − Re

(
Ij(a)∗Ij(b)

)}
+ (q ↔ q̄)

with Fourier integral (and similar for Ij(b))

Ij(a) ≡µ2ϵ
∫

d2−2ϵP

(2π)2−2ϵ

eiP·(x01+ξx20)

(P2 +Q
2
)

∫
d2−2ϵK

(2π)2−2ϵ

Kj eiK·x20[
K2 +

ξ(1−ξ)
(1−z)

(P2 +Q
2
)
]

Remark on implementation of k− rapidity reg. : different K gluon momentum before
and after the target
⇒ Insert the factor (2ξzq+ν−/K2)

η
2 in each integral Ij(a) or Ij(b).

Observation: taking ξ = 0 in Ij(a) is equivalent to focusing on its UV regime x2 → x0

(and K → +∞).
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qq̄g contribution to NLO FL

qq̄g contribution to FL: + prescription piece

Both rapidity regulators in k+ and k− lead to the same + prescription contribution:

FL|qq̄g+ prescr. =
16Q4

2π
Nc

∑
f

e2f

∫ 1

0
dz z2(1−z)2

∫
d2−2ϵx0

∫
d2−2ϵx1

αsCF

π

∫
d2−2ϵx2

× Re
[
1−S(3)

012

] ∫ 1

0
dξ

2

(ξ)+

{
|Ij(a)|2 − Re

(
Ij(a)∗Ij(b)

)}
+ (q ↔ q̄)

But subtracting the ξ = 0 value of the bracket simultaneously subtracts its UV behavior
⇒ Fully finite contribution, can take ϵ = 0:

FL|qq̄g+ prescr. = 16Q4Nc

∑
f

e2f

∫ 1

0
dz z2(1−z)2

∫
d2x0

(2π)2

∫
d2x1

(2π)2
αsCF

π

∫
d2x2

2π

[
x20

x2
20

·
(
x20

x2
20

−
x21

x2
21

)]

× Re
[
1−S(3)

012

]
2

∫ 1

0

dξ

ξ

{[
K0

(
Q

√
(1−ξ)x2

01 + ξx2
21 +

zξ(1−ξ)
(1−z)

x2
20

)]2
−
[
K0

(
Q|x01|

) ]2}
+ (q ↔ q̄)

However, in the regime of large daughter dipoles x2
20 ∼ x2

21 ≫ x2
01, the ξ integration

gives a large collinear log(x2
20/x

2
01).
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qq̄g contribution to NLO FL

qq̄g contribution to FL: UV term from the η pole

From the rapidity sensitive qq̄g term, apart from the + prescription piece, one gets the
η pole piece:
Contains UV divergences that can be isolated into a dipole-like combination by writing(

1−S(3)
012

)
= (1−S01) +

(
S01−S(3)

012

)
• With rapidity regulator in k+:

ṼL
qq̄g; η pole.; UV

∣∣∣∣η+ =

[
2

η
+ 2 log

(
q+

ν+

)
+ log (z(1−z))

]
Γ(1−ϵ)

ϵ

[
πµ2x2

01

]ϵ
+O(ϵ) +O(η)

• With rapidity regulator in k−:

ṼL
qq̄g; η pole.; UV

∣∣∣∣η− =

[
2

η
+ 2 log

(
2q+ν−x2

01

c20

)
+ log (z(1−z))

]
Γ(1−ϵ)

ϵ

[
πµ2x2

01

]ϵ
−2

Sϵ

ϵ2

[
x2
01µ

2

c20

]ϵ
+
π2

6
+O(ϵ) +O(η)

In both cases: total dipole-like contribution to NLO FL (qq̄ terms + dipole-like UV
terms from qq̄g):

ṼL
total =

1

2

[
log

(
z

1−z

)]2
−
π2

6
+

5

2
+O(ϵ) +O(η)

Same result, finite, as with cut-off in k+, G.B., 2017.

G. Beuf (NCBJ, Warsaw) FL at NLO with rap. regulators Sept. 24, 2025 19 / 22



qq̄g contribution to NLO FL

UV subtracted η pole piece with η+ regulator

Expanding in η and then taking ϵ = 0 in the leftover contribution, in the case of rapidity
regulator in k+:

FL|qq̄g ; η+
η pole, UV sub. = 16Q4Nc

∑
f

e2f

∫ 1

0
dz z2(1−z)2

∫
d2x0

(2π)2

∫
d2x1

(2π)2

[
K0

(
Q|x01|

) ]2
×

2αsCF

π

∫
d2x2

2π

x2
01

x2
20x

2
21

Re
[
S01−S(3)

012

] [ 1
η
+ log

(
q+
√
z(1− z)

ν+

)]
+O(ϵ) +O(η)

Need to define a rapidity subtracted (or renormalized) dipole operator to absorb the 1/η
into the LO, as

S01|rap. sub. ≡S01|unsub. +
1

η

2αsCF

π

{∫
d2x2

2π

x2
01

x2
20x

2
21

Re
[
S01−S(3)

012

]
+O(ϵ)

}

The rapidity subtracted dipole operator should then depend on ν+, according the
standard BK equation.

Natural scale choice: ν+ = q+
√

z(1−z), to resum low x leading logs.

However: large collinear logs mentioned earlier for large daughter dipoles
x2
20 ∼ x2

21 ≫ x2
01 still there.
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qq̄g contribution to NLO FL

UV subtracted η pole piece with η− regulator

Expanding in η and then taking ϵ = 0 in the leftover contribution, in the case of rapidity
regulator in k−:

FL|qq̄g ; η−
η pole, UV sub. = 16Q4Nc

∑
f

e2f

∫ 1

0
dz z2(1−z)2

∫
d2x0

(2π)2

∫
d2x1

(2π)2

[
K0

(
Q|x01|

) ]2
×

2αsCF

π

∫
d2x2

2π
Re
[
S01−S(3)

012

] {[ 1
η
+ log

(
2zq+ν− x2

20

c20

)][
x20

x2
20

·
(
x20

x2
20

−
x21

x2
21

)]
+

[
1

η
+ log

(
2(1−z)q+ν− x2

21

c20

)][
x21

x2
21

·
(
x21

x2
21

−
x20

x2
20

)]}
+O(ϵ) +O(η)

After similar rapidity subtraction of dipole operator, it should depend on ν−, according
the standard BK equation.
Results reminiscent of Liu, Xie, Kang, Liu, 2022 for NLO single jet in pA from SCET.

Natural scale choice: ν− = c20/
(
2q+

√
z(1−z)x2

01

)
, to resum low x leading logs.

Leftover after this choice: terms in log(x2
20/x

2
01) and in log(x2

21/x
2
01):

• Cancel the large collinear logs mentioned earlier for large daughter dipoles
x2
20 ∼ x2

21 ≫ x2
01

• Become new large anticollinear logs in the small daughter dipole regimes
x2
20 ≪ x2

21 ∼ x2
01 or x2

21 ≪ x2
20 ∼ x2

01
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Conclusion

Summary and comments

• Rapidity regulators used to rederive:
• γ∗L → qq̄ LFWF at one loop

• DIS structure function FL at NLO

→ Shows the feasibility of NLO CGC calculations with these rapidity regulators
from the SCET/TMD communities

In this calculation:

• LL BK equation recovered, with either scale ν+ or ν− as evolution variable (or
rapidity), depending on the type of rapidity regulator used

• Expected scheme-dependent pattern of large (anti)collinear logs recovered

Using these rapidity regulators: new insights on (anti)collinear logs in BK/JIMWLK and
their resummation?

To be done:

• Case of DIS structure function FT at NLO : calculations ongoing
• Low x evolution from operator definition with these rapidity regulators
• Less inclusive observables
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